www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Bestimmte Integration
Bestimmte Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmte Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 17:39 Do 27.01.2005
Autor: StSch47

Guten Abend!

Ich sitz (mal wieder) vor meinen Hausaufgaben :)

Aufgabe ist:
Ein Auto fährt mit Geschwindigkeit v(t) zur Zeit t (Startzeitpunkt:0). Bezeichne s(t) die bis zur Zeit
t zurückgelegte Strecke. Wir wissen, dass s'(t) = v(t) ist.

Beweisen Sie, dass das Auto zu einem Zeitpunkt t [mm] \in [/mm] [0, 3/2] (in Stunden) schneller als 120 km/h gefahren sein muss, wenn s(3/2) = 198 km ist.

Soweit so gut.
Ich denk mir also, ich zeige einfach, dass eine maximale Geschwindigkeit von 120 km/h echt kleiner als die Gesamt-Strecke ist. Und das wars!
Aber das stellt mich irgendwie nicht zufrieden, das scheint mir zu simpel.

Meine Rechnung soweit:
s(3/2) = 198 [mm] \ge \integral_{0}^{\bruch{3}{2}} {v(t)dt}=\integral_{0}^{\bruch{3}{2}} {120dt}=120t|_{0}^{\bruch{3}{2}}=180 [/mm]

jemand eine andere Idee?

        
Bezug
Bestimmte Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Fr 28.01.2005
Autor: moudi


> Guten Abend!
>  
> Ich sitz (mal wieder) vor meinen Hausaufgaben :)
>  
> Aufgabe ist:
>  Ein Auto fährt mit Geschwindigkeit v(t) zur Zeit t
> (Startzeitpunkt:0). Bezeichne s(t) die bis zur Zeit
>  t zurückgelegte Strecke. Wir wissen, dass s'(t) = v(t)
> ist.
>  
> Beweisen Sie, dass das Auto zu einem Zeitpunkt t [mm]\in[/mm] [0,
> 3/2] (in Stunden) schneller als 120 km/h gefahren sein
> muss, wenn s(3/2) = 198 km ist.
>  
> Soweit so gut.
>  Ich denk mir also, ich zeige einfach, dass eine maximale
> Geschwindigkeit von 120 km/h echt kleiner als die
> Gesamt-Strecke ist. Und das wars!
>  Aber das stellt mich irgendwie nicht zufrieden, das
> scheint mir zu simpel.

Wieso nicht. Auch eine simple Antwort ist eine Antwort.
Wieso das ganze kompliziert machen, wenn es einfach auch geht.

>  
> Meine Rechnung soweit:
>  s(3/2) = 198 [mm]\ge \integral_{0}^{\bruch{3}{2}} {v(t)dt}=\integral_{0}^{\bruch{3}{2}} {120dt}=120t|_{0}^{\bruch{3}{2}}=180 [/mm]
>

Man kann vielleich deine Antowrt noch exakt Begründen. Weil das Integral monoton ist, (gilt für alle [mm] $t\in[a,b]$, [/mm] dass [mm] $f(t)\leq [/mm] g(t)$, dann gilt auch [mm] $\int_a^b f(t)\,dt\leq \int_a^b g(t)\,dt$) [/mm] folgt aus [mm] $v(t)\leq [/mm] 120$, dass [mm] $\int_0^{3/2} v(t)\,dt\leq \int_0^{3/2} 120\,dt=180$. [/mm]

mfG Moudi

>
> jemand eine andere Idee?
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]