Beschränktheit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:33 Mi 22.01.2014 | Autor: | hilbert |
Hallo!
Ich habe folgendes Problem: Ich habe ein Element [mm] \eta [/mm] auf dem Einheitskreis mit [mm] \eta \neq [/mm] 1 und soll zeigen, dass [mm] \summe_{n=0}^{\infty}\eta^n [/mm] beschränkt ist.
Ich denke, das hat mit der Periodizität zu tun, leider weiß ich nicht, wie ich das zeigen soll. Ich habe versucht [mm] \eta [/mm] als [mm] e^{i\varphi} [/mm] zu schreiben, jedoch kam ich bei der Summation nicht weiter, da das [mm] \varphi [/mm] ja auch irgendwie von n abhängen muss. Wichtig ist dabei gesagt, dass es sich nicht um Einheitswurzeln handeln muss.
Hat jemand eine Idee?
|
|
|
|
Hallo hilbert,
mal vorab: soll es sich um eine Aufgabe im Reellen handeln?
Also [mm] \eta\in\IR^2. [/mm] ???
> Hallo!
>
> Ich habe folgendes Problem: Ich habe ein Element [mm]\eta[/mm] auf
> dem Einheitskreis mit [mm]\eta \neq[/mm] 1 und soll zeigen, dass
> [mm]\summe_{n=0}^{\infty}\eta^n[/mm] beschränkt ist.
In [mm] \IR^2 [/mm] müsste man ja erstmal definieren, was [mm] \eta*\eta [/mm] eigentlich bedeutet.
> Ich denke, das hat mit der Periodizität zu tun, leider
> weiß ich nicht, wie ich das zeigen soll. Ich habe versucht
> [mm]\eta[/mm] als [mm]e^{i\varphi}[/mm] zu schreiben,
Bei [mm] \eta\in\IC [/mm] ist das eine sehr gute Idee. Auch für [mm] \eta\in\IR^2 [/mm] kann sie gut sein, je nachdem wie die Multiplikation dort definiert ist.
> jedoch kam ich bei der
> Summation nicht weiter, da das [mm]\varphi[/mm] ja auch irgendwie
> von n abhängen muss. Wichtig ist dabei gesagt, dass es
> sich nicht um Einheitswurzeln handeln muss.
>
> Hat jemand eine Idee?
Jo. Ich gehe doch lieber von einer komplexen Zahl aus.
Es gilt [mm] \br{x^n-1}{x-1}=\summe_{k=0}^{n-1}x^k
[/mm]
Moivre sagt Dir, dass [mm] x^n [/mm] auf dem Einheitskreis liegt. x=1 war ja in der Aufgabe ausgeschlossen.
Und damit ist die Beschränkung nun leicht zu zeigen.
Das ist übrigens weder Zauberei noch Geistesblitz, sondern schlicht die Summenformel für geometrische Reihen...
Grüße
reverend
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:02 Mi 22.01.2014 | Autor: | fred97 |
> Hallo!
>
> Ich habe folgendes Problem: Ich habe ein Element [mm]\eta[/mm] auf
> dem Einheitskreis mit [mm]\eta \neq[/mm] 1 und soll zeigen, dass
> [mm]\summe_{n=0}^{\infty}\eta^n[/mm] beschränkt ist.
Was soll denn hier beschränkt bedeuten ????
[mm]\summe_{n=0}^{\infty}\eta^n[/mm]
ist eine unendliche Reihe. Diese Reihe ist für jedes [mm] \eta \in \IC [/mm] mit [mm] |\eta|=1 [/mm] divergent, denn es ist [mm] |\eta^n|=|\eta|^n=1 [/mm] für alle n und somit ist [mm] (\eta^n) [/mm] keine Nullfolge.
FRED
>
> Ich denke, das hat mit der Periodizität zu tun, leider
> weiß ich nicht, wie ich das zeigen soll. Ich habe versucht
> [mm]\eta[/mm] als [mm]e^{i\varphi}[/mm] zu schreiben, jedoch kam ich bei der
> Summation nicht weiter, da das [mm]\varphi[/mm] ja auch irgendwie
> von n abhängen muss. Wichtig ist dabei gesagt, dass es
> sich nicht um Einheitswurzeln handeln muss.
>
> Hat jemand eine Idee?
|
|
|
|