www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Beschränkte Jacobi-Matrix
Beschränkte Jacobi-Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Jacobi-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:53 Do 10.06.2010
Autor: Lippel

Aufgabe
a) Sei [mm] $D\subset\IR^n$ [/mm] eine offene konvexe Menge und [mm] $f:D\rightarrow\IR^n$ [/mm] eine differenzierbare Abbildung mit gleichmäßig beschränkter Jacobimatrix
[mm]\underset{x \in D}{sup} ||J_f(x)||_{2}\le{K_{2}}<{\infty}[/mm]
Man zeige, dass f dann in D Lipschitz-stetig ist, d.h.
[mm]||f(x)-f(y)||_{2}\le{K_{2}||y-x||_{2}}\qquad x,y \in D[/mm]

b) Gilt eine analoge Aussage auch, wenn man die Spektralnorm [mm] $||*||_2$ [/mm] durch eine beliebige andere (natrürliche) Matrixnorm $||*||$ ersetzt?

Hallo,

für Aufgabenteil a) habe ich eine Lösung, bin mir aber mit der Argumentation noch nicht ganz sicher:

Seien $x,y [mm] \in [/mm] D$. Da D konvex, gilt für alle [mm] $t\in [0,1]\subset\IR$, [/mm] dass $x+t(y-x) [mm] \in [/mm] D$
Wir definieren [mm] $g:[0,1]\rightarrow\IR^n$, $t\mapsto{g(t)}:=f(x+t(y-x))$ [/mm]
Daraus folgt für die i-te Komponente von f, $i [mm] \in [/mm] {1,...,n}$:
[mm] f_{i}(y)-f_{i}(x)=g_{i}(1)-g_{i}(0)=\int_{0}^{1}g_{i}'(s)ds=\int_{0}^{1}\sum_{j=1}^{n}\partial_{j}f_{i}(x+s(y-x))(y_{j}-x_{j})ds[/mm]
[mm]\Rightarrow{f(y)-f(x)=\int_{0}^{1}J_{f}(x+s(y-x))(y-x)ds}[/mm]
[mm]\Rightarrow{||f(y)-f(x)||_{2}\le\int_{0}^{1}||J_{f}(x+s(y-x))(y-x)||_{2}ds}\le{K_{2}}||y-x||_{2} [/mm]
wobei im letzten Schritt die Stadndardabschätzung für Integrale verwendet wurde.

b) Hier habe ich keine Idee woran der analoge Beweis für eine andere Matrixnorm scheitern könnte. Für die Normen [mm] $||*||_\infty$ [/mm] und [mm] $||*||_1$ [/mm] gilt die Aussage auch, das habe ich gezeigt. Allerdings käme mir die Frage dann doch überflüssig vor. Also woran könnte ich bei anderen Matrixnormen scheitern? Gibt es ein Gegenbeispiel?

Vielen Dank für eure Hilfe.

Viele Grüße, Lippel

        
Bezug
Beschränkte Jacobi-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:47 Sa 12.06.2010
Autor: max3000


>  Hallo,
>  
> für Aufgabenteil a) habe ich eine Lösung, bin mir aber
> mit der Argumentation noch nicht ganz sicher:
>  
> Seien [mm]x,y \in D[/mm]. Da D konvex, gilt für alle [mm]t\in [0,1]\subset\IR[/mm],
> dass [mm]x+t(y-x) \in D[/mm]
>  Wir definieren
> [mm]g:[0,1]\rightarrow\IR^n[/mm], [mm]t\mapsto{g(t)}:=f(x+t(y-x))[/mm]
>  Daraus folgt für die i-te Komponente von f, [mm]i \in {1,...,n}[/mm]:
>  
> [mm]f_{i}(y)-f_{i}(x)=g_{i}(1)-g_{i}(0)=\int_{0}^{1}g_{i}'(s)ds=\int_{0}^{1}\sum_{j=1}^{n}\partial_{j}f_{i}(x+s(y-x))(y_{j}-x_{j})ds[/mm]
>  [mm]\Rightarrow{f(y)-f(x)=\int_{0}^{1}J_{f}(x+s(y-x))(y-x)ds}[/mm]
>  
> [mm]\Rightarrow{||f(y)-f(x)||_{2}\le\int_{0}^{1}||J_{f}(x+s(y-x))(y-x)||_{2}ds}\le{K_{2}}||y-x||_{2}[/mm]
>  wobei im letzten Schritt die Stadndardabschätzung für
> Integrale verwendet wurde.

Im letzten Schritt benutzt du eigentlich die Submultiplikativität der Norm, also

[mm] \|J_{f}(x+s(y-x))(y-x)\|\le\|J_{f}(x+s(y-x))\|\|(y-x)\|| [/mm]

und die Beschränktheit der Jacobimatrix

[mm] \|J_{f}(x+s(y-x))\|<\infty [/mm] und [mm] K_2:=max_{s\in(0,1)}\|J_{f}(x+s(y-x))\| [/mm]

Das wäre denke ich die richtige Argumentation. Das [mm] \|x-y\| [/mm] und [mm] K_2 [/mm] hängen nun nicht mehr von s ab und können aus dem Integral rausgezogen werden.
  

> b) Hier habe ich keine Idee woran der analoge Beweis für
> eine andere Matrixnorm scheitern könnte. Für die Normen
> [mm]||*||_\infty[/mm] und [mm]||*||_1[/mm] gilt die Aussage auch, das habe
> ich gezeigt. Allerdings käme mir die Frage dann doch
> überflüssig vor. Also woran könnte ich bei anderen
> Matrixnormen scheitern? Gibt es ein Gegenbeispiel?

Ich weiß das leider auch nicht so genau aber ich denke du solltest dir den Begriff "Normverträglichkeit" mal anschauen. Der besagt, dass man folgende Abschätzung gilt:

[mm] \|Av\|\le\|A\|\|v\| [/mm]

Schau einfach hier nochmal nach: http://de.wikipedia.org/wiki/Normierter_Raum#Matrixnormen

Da wir diese Abschätzung im letzten Schritt gebraucht haben, geht unser Beweis in diesem Fall nicht mehr. Vielleicht findest du mal ein Matrix-Vektor Normpaar, was nicht verträglich ist und findest eventuell ein Gegenbeispiel.
Genaueres kann ich dir leider erstmal auch nicht sagen.

Grüße

Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]