Berührpunkte von Netzen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 03:20 Do 22.10.2009 | Autor: | cycore |
Aufgabe | Ist [mm] $x_{\alpha}$ [/mm] ein [mm] $\{F_\alpha\}$ [/mm] zugeordnetes gerichtetes System, so ist der [mm] $x_{\alpha}$ [/mm] zugeordnete Filter feiner als [mm] $\{F_\alpha\}$ [/mm] und hat die selben Berührungspunkte wie [mm] $x_{\alpha}$. [/mm] Die Berührungspunkte der [mm] $\{F_\alpha\}$ [/mm] zugeordneten gerichteten Systeme sind also Berührungspunkte von [mm] $\{F_\alpha\}$. [/mm] |
Hallo, ich muss diesen Satz beweisen - der erste Teil ist ja klar (also das der filter feiner ist)...
Aber weder in dem Buch aus dem der Satz stammt noch sonstwo finde ich eine Definition zu Berührungspunkten eines Gerichteten Systems (Das ist wohl ein anderes Wort für Netz).
Hoffentlich weiß das jemand hier? Ich hab schon spekuliert, ob der letzte Satz vielleicht nicht zu beweisen ist sondern ebendie Definition ist?
oder ist es nicht vielmehr so das es für jeden Berührpunkt des Filters ein dem Filter zugeordnetes Netz existiert das gegen den Berührpunkt konvergiert!?!
Würde mich sehr freuen über Hilfe - LG cycore
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:20 Fr 06.11.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:15 So 08.11.2009 | Autor: | cycore |
für die die es interessiert - hab ne definition gefunden...
ein punkt hißt berührungspunkt eines netzes [mm] $\{x_\alpha\}_{\alpha \in A}$ [/mm] wenn es ein kofinales Teilsystem [mm] $B\subset [/mm] A$ gibt, für das [mm] $\{x_\beta\}_{\beta \in B}$ [/mm] konvergiert...
|
|
|
|