www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bedingte Erwartung
Bedingte Erwartung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Erwartung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:10 Mo 07.09.2015
Autor: Fry

Aufgabe
Es seien [mm]X[/mm] und [mm]Y[/mm] zwei stochastisch unabhängige, [mm]\mathcal N(0,1)[/mm]-verteilte Zufallsgrößen.
a) Bestimmen Sie eine Version von regulär bedingten Verteilung von [mm]Y[/mm] gegeben $X-Y=x$.
b) Bestimmen Sie eine Version der regulär bedingten Verteilung von [mm] $X^2+Y^2$ [/mm] gegeben $X-Y=x$.
 






Hallo zusammen,
 
zu a) habe ich mir überlegt, dass man zunächst die gemeinsame Verteilung (Y,X-Y) berechnen könnte (der Vektor müsste bivariat normalverteilt sein),daraus dann die Dichte der gem. Verteilung herleiten und schließlich über
die Formel
[mm]f_{Y|X-Y}(y,x)=\int_{\mathbb R}f_{(Y,X-Y)}(y,x)dy[/mm] könnte.

Zu b) habe ich bislang noch keine Idee. Hätte jemand einen Ansatz für mich?

Vielen Dank!

Viele Grüße
Fry

        
Bezug
Bedingte Erwartung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mi 09.09.2015
Autor: Fry

Hat sich erledigt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]