www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Do 23.05.2019
Autor: Tobikall

Aufgabe
Gegeben sei das nichtlineare Gleichungssystem [mm] \pmat{ 10 & 10 \\ 4 & 20 }\pmat{ x_1\\ x_2 }+\pmat{ ln(1+e^{x_1 }) \\ ln(1+e^{x_1+x_2}) }= \pmat{ 0 \\ 0 } [/mm]
a) Zeigen Sie mit Hilfe des Banachschen Fixpunktsatzes, dass das Gleichungssystem eine eindeutige Lösung x∗ [mm] \in R^2 [/mm] besitzt. Hinweis: Verwenden Sie die [mm] \parallel \parallel\infty-Norm [/mm] und zeigen Sie, dass L = [mm] \bruch{3}{8} [/mm] eine geeignete Wahl für die Lipschitzkonstante ist.
b) Geben Sie eine Schranke für die Anzahl der Iterationen an, die man höchstens benötigt, um die Lösung x∗ mit der Iterationsvorschrift [mm] x^{k+1} [/mm] = [mm] \phi(x^{k}) [/mm] ausgehend von [mm] x^{0} [/mm] = [mm] (0,0)^T [/mm] bis auf einen Fehler von e= 10^−6 zu berechnen.


Hallo Forum,

bräuchte dringend Hilfe bei den beiden Aufgabenteilen

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Do 23.05.2019
Autor: fred97

Sei [mm] X=\IR^2. [/mm] Dann ist X , versehen mit mit der $|| [mm] \cdot||_{\infty}$ [/mm] - Norm ein Banachraum.

Definiere [mm] $\phi: \IR^2 \to \IR^2$ [/mm] durch

[mm] $\phi(x):= \pmat{ 10 & 10 \\ 4 & 20 }\pmat{ x_1\\ x_2 }+\pmat{ ln(1+e^{x_1 }) \\ ln(1+e^{x_1+x_2}) }+ \pmat{ x_1 \\ x_2 } [/mm] $,

wobei [mm] $x=(x_1,x_2).$ [/mm]

Dann gilt

$ [mm] \pmat{ 10 & 10 \\ 4 & 20 }\pmat{ x_1\\ x_2 }+\pmat{ ln(1+e^{x_1 }) \\ ln(1+e^{x_1+x_2}) }= \pmat{ 0 \\ 0 } \gdw \phi(x)=x.$ [/mm]


Zu zeigen ist also: [mm] \phi [/mm] hat genau einen Fixpunkt.

Der Hinweis gibt einen Hinweis auf das was zu tun ist:

zeige:

$ || [mm] \phi(x)- \phi(y)||_{\infty} \le \frac{3}{8} [/mm] || [mm] x-y||_{\infty} [/mm] $ für alle $x,y [mm] \in [/mm] X.$

Wenn Du das hast, ist a) erledigt.

Zu b): in Deiner Vorlesung hast Du sicher Fehlerabschätzungen beim obigen Iterationsverfahren kennengelernt. Verwende diese !



Bezug
                
Bezug
Banachscher Fixpunktsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:46 Do 23.05.2019
Autor: Tobikall

Hallo fred :)

das habe ich bisher soweit verstanden, bisher war es ja eher nur geschicktes einsetzen.
Mein Problem fängt aber genau jetzt an, da ich einfach nicht weiß, wie ich das ganze jetzt gut abschätzen und umrechnen kann.
Man kann die Norm ja schon immerhin mal mit [mm] \le [/mm] abschätzen, wenn man das x-y herauszieht und in eine eigene Norm schreibt, aber trotz Herumprobierens komme ich vor allem mit dem Logarithmus und den darin enthaltenen Potenzen von x,y nicht klar...

Bezug
                        
Bezug
Banachscher Fixpunktsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 25.05.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]