www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Aufspannende Bäume
Aufspannende Bäume < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufspannende Bäume: Eindeutigkeit
Status: (Frage) beantwortet Status 
Datum: 13:43 Sa 15.07.2006
Autor: branwijck

Hallo,
ich würde gerne wissen,wie ich zeigen könnte, dass ein geweichteter Graph G (= [mm] K_{n}) [/mm] mit der Kostenfunktion w(ij) = i + j genau einen minimalen aufspannenden Baum enthält.


Da es klar ist, dass Kruskalls- oder Primsalgorithmus mit einem Graph G als Eingabe einen minimalen aufspannenden Baum ausgeben, hätte ich schon eine halbe Übung schon bewiesen aber anders ist die Eindutigkeit der Lösung.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Meine Idee ist zu beweisen, dass die Kostenfunktion nur ein Minimum hat.

Habt ihr andere Ideeen?

Danke

        
Bezug
Aufspannende Bäume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 16.07.2006
Autor: felixf

Hallo branwijck!

>  ich würde gerne wissen,wie ich zeigen könnte, dass ein
> geweichteter Graph G (= [mm]K_{n})[/mm] mit der Kostenfunktion w(ij)
> = i + j genau einen minimalen aufspannenden Baum enthält.

Die Ecken sind also $1, [mm] \dots, [/mm] n$, und zwischen je zwei Ecken gibts eine Kante? Der minimale aufspannende Baum ist wohl der Untergraph, der gerade alle Ecken hat, die Ecke #1 mit einer beliebigen anderen Ecke verbinden. Die Gewichtung ist dann [mm] $\sum_{i=2}^n w_{1i} [/mm] = [mm] \sum_{i=2}^n [/mm] (1 + i) = (n-2) + [mm] \sum_{i=1}^n [/mm] i = (n-2) + [mm] \frac{n (n + 1)}{2}$. [/mm]

Um zu zeigen, dass dieser minimal ist: Nimm an, du hast einen anderen. Dieser hat ebenfalls $n-1$ Ecken, etwa [mm] $\{ i_k, j_k \}_{k=1,\dots,n-1}$. [/mm] Die Gewichtung des Baums ist also [mm] $\sum_{k=1}^{n-1} (i_k [/mm] + [mm] j_k)$. [/mm] Nun muss jeder Knoten als ein [mm] $i_k$ [/mm] oder [mm] $j_k$ [/mm] vorkommen, und das andere Ende der Ecke hat einen Knoten [mm] $\ge [/mm] 1$. Also ist [mm] $\sum_{k=1}^{n-1} (i_k [/mm] + [mm] j_k) \ge \sum_{i=1}^n [/mm] i + (n - 2)$. Also ist unserer Teilgraph oben schonmal kleinstmoeglich (von der Gewichtung her).

Angenommen, es sei [mm] $\sum_{k=1}^{n-1} (i_k [/mm] + [mm] j_k) [/mm] = [mm] \sum_{i=1}^n [/mm] i + (n - 2)$. Dann kommt jeder Knoten $> 1$ genau einmal vor, und der Knoten $1$ kommt $n-1$ mal vor. Aber das bedeutet gerade, dass der Baum der obige sein muss, da er ansonsten den Graphen nicht aufspannt (das musst du noch ein wenig ausfuehren).

LG Felix


Bezug
                
Bezug
Aufspannende Bäume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Di 18.07.2006
Autor: branwijck

Danke, es war eine große Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]