Aufgabe über Skalarprodukte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:39 Mi 30.06.2010 | Autor: | Teufel |
Aufgabe | Seien $A, [mm] B\in M(n;\IR)$ [/mm] positiv definite, symmetrische Matrizen. Zeige, dass es dann eine Basis [mm] $\{v_1,...,v_n\}$ [/mm] des [mm] \IR^n [/mm] und reelle Zahlen [mm] $\lambda_1, [/mm] ... , [mm] \lambda_n \in \IR$ [/mm] gibt, sodass für [mm] $1\le [/mm] i,j [mm] \le [/mm] n$ gilt:
[mm] =\delta_{ij} [/mm] und
[mm] =\lambda_i*\delta_{ij}. [/mm] |
Hi!
Als Hinweis wurde noch folgendes gegeben: Man soll schauen, bezüglich welchem Skalarprodukt die lineare Abbildung [mm] A^{-1}B [/mm] selbstadjungiert ist.
Dann bin ich eben darauf gekommen, dass man dafür $<v,w>:=v^TAw$ setzen könnte.
Dann ist eben
[mm] =v^TB^T(A^{-1})^TAw=...=v^TBw
[/mm]
und [mm] =v^TAA^{-1}Bw=v^TBw.
[/mm]
Soweit alles ok.
Dann wollte ich so weitermachen:
Bezüglich diesem Skalarprodukt ist auch A selbstadjungiert
($<Av,w>=v^TA^TAw=v^TAAw=<v,Aw>$) und daher existiert eine Orthonormalbasis des [mm] \IR^n, [/mm] die aus Eigenvektoren von A besteht (weil A ja auch symmetrisch ist und n reelle Eigenwerte und damit n Eigenvektoren besitzt, aus denen man eben eine Orthonormalbasis bilden kann).
Diese sei [mm] \{w_1,...,w_n\}.
[/mm]
Also gilt für diese Basisvektoren dann [mm] $Aw_i=\alpha_i w_i$ (\alpha_i>0 \forall [/mm] i). Nun kann man die Basis nehmen und jeden Vektor [mm] v_i [/mm] noch durch [mm] \sqrt{a_i} [/mm] teilen. Wähle also eine neue Basis, mit den Basisvektoren [mm] v_i:=\bruch{w_i}{\sqrt{a_i}}. [/mm] Denn dann hat man schon mal sichergestellt, dass
[mm] =<\alpha_iv_i,v_i>=\alpha_i=\alpha_i*(\bruch{1}{\sqrt{a_i}})^2=1 [/mm] ist und [mm] =\alpha_i=0 [/mm] für i [mm] \not= [/mm] j.
Nun kann man noch ausnutzen, dass [mm] A^{-1}B [/mm] selbstadjungiert war. Also existiert auch eine ONB aus Eigenvektoren von dieser Abbildung. Jetzt die Frage: Kann ich davon ausgehen, dass [mm] A^{-1}B [/mm] die selben Eigenvektoren besitzt wie A? Wenn dem so wäre, dann würde der Rest einfach folgen.
Dann hätte man [mm] $A^{-1}Bv_i=\lambda_iv_i \gdw Bv_i=\lambda_i Av_i$ [/mm] und damit
[mm] =\lambda_i=\lambda_i<\alpha_i v_i, v_j>=\lambda_i [/mm] falls i=j und =0 für [mm] $i\not= [/mm] j$, wie gefordert.
Stimmt das so? Und wenn ja, wie kann ich das begründen, dass A und [mm] A^{-1}B [/mm] die gleichen Eigenvektoren besitzen? Oder muss ich mir einen anderen Weg suchen?
Danke!
Teufel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:46 Do 01.07.2010 | Autor: | gfm |
> Seien [mm]A, B\in M(n;\IR)[/mm] positiv definite, symmetrische
> Matrizen. Zeige, dass es dann eine Basis [mm]\{v_1,...,v_n\}[/mm]
> des [mm]\IR^n[/mm] und reelle Zahlen [mm]\lambda_1, ... , \lambda_n \in \IR[/mm]
> gibt, sodass für [mm]1\le i,j \le n[/mm] gilt:
>
> [mm]=\delta_{ij}[/mm] und
> [mm]=\lambda_i*\delta_{ij}.[/mm]
> Hi!
>
> Als Hinweis wurde noch folgendes gegeben: Man soll schauen,
> bezüglich welchem Skalarprodukt die lineare Abbildung
> [mm]A^{-1}B[/mm] selbstadjungiert ist.
>
> Dann bin ich eben darauf gekommen, dass man dafür
> [mm]:=v^TAw[/mm] setzen könnte.
> Dann ist eben
> [mm]=v^TB^T(A^{-1})^TAw=...=v^TBw[/mm]
> und [mm]=v^TAA^{-1}Bw=v^TBw.[/mm]
>
> Soweit alles ok.
>
> Dann wollte ich so weitermachen:
> Bezüglich diesem Skalarprodukt ist auch A
> selbstadjungiert
> ([mm]=v^TA^TAw=v^TAAw=[/mm]) und daher existiert eine
> Orthonormalbasis des [mm]\IR^n,[/mm] die aus Eigenvektoren von A
> besteht (weil A ja auch symmetrisch ist und n reelle
> Eigenwerte und damit n Eigenvektoren besitzt, aus denen man
> eben eine Orthonormalbasis bilden kann).
> Diese sei [mm]\{w_1,...,w_n\}.[/mm]
>
> Also gilt für diese Basisvektoren dann [mm]Aw_i=\alpha_i w_i[/mm]
> [mm](\alpha_i>0 \forall[/mm] i). Nun kann man die Basis nehmen und
> jeden Vektor [mm]v_i[/mm] noch durch [mm]\sqrt{a_i}[/mm] teilen. Wähle also
> eine neue Basis, mit den Basisvektoren
> [mm]v_i:=\bruch{w_i}{\sqrt{a_i}}.[/mm] Denn dann hat man schon mal
> sichergestellt, dass
>
> [mm]=<\alpha_iv_i,v_i>=\alpha_i=\alpha_i*(\bruch{1}{\sqrt{a_i}})^2=1[/mm]
> ist und [mm]=\alpha_i=0[/mm] für i [mm]\not=[/mm] j.
>
> Nun kann man noch ausnutzen, dass [mm]A^{-1}B[/mm] selbstadjungiert
> war. Also existiert auch eine ONB aus Eigenvektoren von
> dieser Abbildung. Jetzt die Frage: Kann ich davon ausgehen,
> dass [mm]A^{-1}B[/mm] die selben Eigenvektoren besitzt wie A? Wenn
> dem so wäre, dann würde der Rest einfach folgen.
>
> Dann hätte man [mm]A^{-1}Bv_i=\lambda_iv_i \gdw Bv_i=\lambda_i Av_i[/mm]
> und damit
> [mm]=\lambda_i=\lambda_i<\alpha_i v_i, v_j>=\lambda_i[/mm]
> falls i=j und =0 für [mm]i\not= j[/mm], wie gefordert.
>
> Stimmt das so? Und wenn ja, wie kann ich das begründen,
> dass A und [mm]A^{-1}B[/mm] die gleichen Eigenvektoren besitzen?
> Oder muss ich mir einen anderen Weg suchen?
>
> Danke!
>
> Teufel
Ich mag mir das ja zu einfach machen oder vielleicht liege ich ja auch ganz falsch:
Sei [mm]<.|.>[/mm] das Skalarprodukt bezüglich dessen [mm]A[/mm] und [mm]B[/mm] symmetrisch sind, und sei [mm]<.|.>_A:=<.|A.>[/mm] das von [mm]A[/mm] Induzierte. Da [mm]C:=A^{-1}B[/mm] wegen [mm]_A=====_A[/mm] symmetrisch bezüglich [mm]<.|.>_A[/mm] ist, existiert ein VONS [mm]\lambda_i, v_i[/mm] von EVen von [mm]C[/mm] bezüglich [mm]<.|.>_A[/mm], für das [mm]==_A=\lambda_j\delta_{ij}[/mm] und [mm]==_A=\delta_{ij}[/mm] gilt.
Was meinst Du?
LG
gfm
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:46 Do 01.07.2010 | Autor: | Teufel |
Hi!
Sieht eigentlich sehr gut aus. Ich bin wohl nur damit durcheinander gekommen, dass ich plötzlich 2 verschiedene Skalarprodukte habe und das nicht wirklich beachtet habe. Aber so wie du das schreibst, ergibt das alles plötzlich Sinn. Vielen Dank!
Teufel
|
|
|
|