www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Arit. Folge (Induktionsbeweis)
Arit. Folge (Induktionsbeweis) < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arit. Folge (Induktionsbeweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Di 23.11.2010
Autor: el_grecco

Aufgabe
[mm] $\forall [/mm] a,d [mm] \in \IR$ [/mm] sei eine arithmetische Folge [mm] $(a_{n})_{n \in \IN}$ [/mm] definiert als :

[mm] $\forall [/mm] n [mm] \in \IN: a_{n} [/mm] := a + (n - 1)d$.

Beweise folgende Aussage mittels Induktion:

[mm] $\forall [/mm] n [mm] \in \IN [/mm] : [mm] S_{n} [/mm] := [mm] \summe_{k=1}^{n} [/mm] = [mm] a_{k} [/mm] = [mm] \bruch{n}{2}(a_{1} [/mm] + [mm] a_{n})=\bruch{n}{2}(2a+(n-1)d)$. [/mm]

Hallo,

es wäre sehr nett, wenn jemand kurz prüfen kann, ob mein Ansatz richtig ist:

Induktionsanfang n = 1: [mm] \summe_{k=1}^{1}a_{k} =a_{1}=\bruch{1}{2}(a_{1}+a_{1})=\bruch{1}{2}(2a_{1})=a_{1}=a=\bruch{1}{2}(2a)=\bruch{1}{2}(2a+(1-1)d)$ [/mm]

Induktionsschritt $n [mm] \to [/mm] n+1$:
Induktionsvoraussetzung:
Für ein [mm] $n\in \IN$ [/mm] gelte: [mm] $\summe_{k=1}^{n} [/mm] = [mm] a_{k} [/mm] = [mm] \bruch{n}{2}(a_{1} [/mm] + [mm] a_{n})=\bruch{n}{2}(2a+(n-1)d)$. [/mm]


Vielen Dank.

Gruß
el_grecco


        
Bezug
Arit. Folge (Induktionsbeweis): Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Di 23.11.2010
Autor: schachuzipus

Hallo el_grecco,

> [mm]\forall a,d \in \IR[/mm] sei eine arithmetische Folge [mm](a_{n})_{n \in \IN}[/mm]
> definiert als :
>
> [mm]\forall n \in \IN: a_{n} := a + (n - 1)d[/mm].



>
> Beweise folgende Aussage mittels Induktion:
>
> [mm]\forall n \in \IN : S_{n} := \summe_{k=1}^{n} = a_{k} = \bruch{n}{2}(a_{1} + a_{n})=\bruch{n}{2}(2a+(n-1)d)[/mm].

Das "=" ist der Summe ist zuviel!

>
> Hallo,
>
> es wäre sehr nett, wenn jemand kurz prüfen kann, ob mein
> Ansatz richtig ist:
>
> Induktionsanfang n = 1: [mm]\summe_{k=1}^{1}a_{k} =a_{1}=\bruch{1}{2}(a_{1}+a_{1})=\bruch{1}{2}(2a_{1})=a_{1}=a=\bruch{1}{2}(2a)=\bruch{1}{2}(2a+(1-1)d)$[/mm]
>
> Induktionsschritt [mm]n \to n+1[/mm]:
> Induktionsvoraussetzung:
> Für ein [mm]n\in \IN[/mm] gelte: [mm]\summe_{k=1}^{n} = a_{k} = \bruch{n}{2}(a_{1} + a_{n})=\bruch{n}{2}(2a+(n-1)d)[/mm].

Nun der Schritt auf [mm]n+1[/mm]

Beh.: Die Aussage gilt auch für [mm]n+1[/mm], also zu zeigen:

[mm]\sum\limits_{k=1}^{n+1}a_k=\frac{n+1}{2}(a_1+a_{n+1})=\frac{n+1}{2}(2a+nd)[/mm]

Nimm dir dazu die linke Seite her, teile die Summe in eine bis n und den letzten Summanden und wende dann die IV an:

[mm]\sum\limits_{k=1}^{n+1}a_k \ = \ \left[ \ \sum\limits_{k=1}^na_k \ \right] \ + \ a_{n+1}[/mm]

Nun die IV auf die Summe bis n anwenden und weiter umformen. Wie kannst du [mm]a_{n+1}[/mm] schreiben? ...

>
>
> Vielen Dank.
>
> Gruß
> el_grecco


LG

schachuzipus

Bezug
                
Bezug
Arit. Folge (Induktionsbeweis): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Di 23.11.2010
Autor: el_grecco

Vielen Dank, schachuzipus.

Ich habe die Aufgabe mit deinen Tipps komplett hinbekommen. ;-)


Gruß
el_grecco


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]