www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Approximation Treppenfunktion
Approximation Treppenfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation Treppenfunktion: Tipp
Status: (Frage) überfällig Status 
Datum: 19:19 Mo 01.02.2010
Autor: Olga1234

Aufgabe
f(x) = [mm] \bruch{1}{x} [/mm]
[mm] f_{n}(x) [/mm] = [mm] \summe_{k=0}^{n-1} \bruch{1}{x^{n}} [/mm] ( [mm] x^{\bruch{k+1}{n} }- x^{\bruch{k}{n}} [/mm] )

Ich will zeigen, dass [mm] f_{n} [/mm] gleichmäßig gegen f konvergiert.

Dafür muss ich ja zeigen, dass
[mm] \limes_{n\rightarrow\infty} \parallel f_{n} [/mm] - f [mm] \parallel [/mm] = 0

Das bedeutet:

[mm] sup_{x \in [a,b]} [/mm] |  [mm] f_{n} [/mm] - f |
= [mm] sup_{x \in [a,b]} [/mm] | [mm] (\bruch{1}{x^{n}} [/mm] ( [mm] x^{\bruch{k+1}{n} }- x^{\bruch{k}{n}} [/mm] )) - [mm] \bruch{1}{x}| [/mm]
= [mm] sup_{x \in [a,b]} [/mm] | [mm] (x^{\bruch{1}{n}}-1) [/mm] - [mm] \bruch{1}{x}| [/mm]
= ???

kann mir jemand den nächsten schritt verraten?
ist der ansatz denn richtig?

        
Bezug
Approximation Treppenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Mo 01.02.2010
Autor: steppenhahn

Hallo Olga,

> f(x) = [mm]\bruch{1}{x}[/mm]
>  [mm]f_{n}(x)[/mm] = [mm]\summe_{k=0}^{n-1} \bruch{1}{x^{n}}[/mm] (
> [mm]x^{\bruch{k+1}{n} }- x^{\bruch{k}{n}}[/mm] )
>  Ich will zeigen, dass [mm]f_{n}[/mm] gleichmäßig gegen f
> konvergiert.

Bist du dir sicher, dass du das richtig konstruiert hast?
So geht das nämlich alles eher gegen 0.

Wie lautete denn dir ursprüngliche Aufgabe mit den Treppenfunktionen?

Grüße,
Stefan

Bezug
                
Bezug
Approximation Treppenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Mo 01.02.2010
Autor: Olga1234

die aufgabe war [mm] \integral_{0}^{x}{\bruch{1}{x} dx} [/mm] mittels treppenfunktionen zu approximieren, was ich schon getan habe. am ende kommt = ln x raus.
allerdings muss ich noch zeigen, dass die gefundene treppenfunktionen [mm] f_{n} [/mm] gegen f konvergiert um zu zeigen, dass [mm] f_{n} [/mm] f approximiert.

allerdings ist da wirklich ein kleiner fehler.
es muss heißen

[mm] \parallel [/mm] fn - f [mm] \parallel [/mm] = sup | fn- f | = sup | [mm] \bruch{1}{x_{n}} [/mm] - [mm] \bruch{1}{x}| [/mm]

Bezug
        
Bezug
Approximation Treppenfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 03.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]