www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Apfelmännchen / Mandelbrot?!
Apfelmännchen / Mandelbrot?! < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Apfelmännchen / Mandelbrot?!: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 17.12.2014
Autor: mathe-assi

Aufgabe
Aufgabe
Sei
M = {c ∈ [mm] \IC [/mm] | die Folge [mm] (z_n)_{n} [/mm] mit  [mm] z_{1} [/mm]  = 0 und  [mm] z_{n+1} [/mm]  =  [mm] z_{n}^2 [/mm]   + c für alle n ∈ [mm] \IN [/mm] ist beschränkt}.
Für alle c ∈ [mm] \IC [/mm] zeige man c ∈ M, falls |c| < $ [mm] \bruch{1}{4} [/mm] $ und |c| $ [mm] \le [/mm] $ 2, falls c $ [mm] \in [/mm] $ M .
Man skizziere M.

Die "alte" Frage wurde leider geschlossen.
Inzwischen habe ich erlesen, dass die Aufgabe zumindest irgendwie mit den Apfelmännchen zu tun hat.
Ich weiß aber gar nicht, wie hier was zu zeigen ist.

        
Bezug
Apfelmännchen / Mandelbrot?!: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Do 18.12.2014
Autor: leduart

Hallo
|c|<1/4  must du einfach zeigen, dass [mm] z_n [/mm] beschränkt ist. [mm] z_1=c [/mm]
damit [mm] |z_1^2|<1/16 [/mm] damit [mm] |z_2|<1/4+1/16 [/mm] usw
ich vermute [mm] |z_n|<1 [/mm] und versuch das mit Induktion zu zeigen. im zweiten muss man eben zeigen dass für c>2 die iteration divergiert.
mit dem Apfelmänchen hat das nur am Rande zu tun
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]