www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Anzahl Bool. Funktionen
Anzahl Bool. Funktionen < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Bool. Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 So 23.03.2008
Autor: Wimme

Aufgabe
Aufgabe 7: Anzahl an Boolesche Funktionen
Wieviele 13-stellige Boolesche Funktionen gibt es? Zur Beantwortung dieser Frage bestimmen
Sie zwei Zahlen m und d, so dass [mm] m\cdot10^d [/mm] die Anzahl der 13-stelligen Boolesche Funktionen
ist, d eine ganze Zahl ist, und
[mm] \bruch{1}{10}<= [/mm] m < 1 gilt.1 Geben Sie m auf vier Nachkommastellen
genau an

Hallo!

Kann mir jemand bei obiger Frage helfen? ich weiß nicht, wie ich das bestimmen soll. Also was ich schon einmal weiß, ist, dass es [mm] 2^{2^{13}} [/mm] solcher Funktionen gibt. Aber wie zum Henker bestimme ich nun d und m?!

Danke!

        
Bezug
Anzahl Bool. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 So 23.03.2008
Autor: abakus


> Aufgabe 7: Anzahl an Boolesche Funktionen
>  Wieviele 13-stellige Boolesche Funktionen gibt es? Zur
> Beantwortung dieser Frage bestimmen
>  Sie zwei Zahlen m und d, so dass [mm]m\cdot10^d[/mm] die Anzahl der
> 13-stelligen Boolesche Funktionen
>  ist, d eine ganze Zahl ist, und
> [mm]\bruch{1}{10}<=[/mm] m < 1 gilt.1 Geben Sie m auf vier
> Nachkommastellen
>  genau an
>  Hallo!
>  
> Kann mir jemand bei obiger Frage helfen? ich weiß nicht,
> wie ich das bestimmen soll. Also was ich schon einmal weiß,
> ist, dass es [mm]2^{2^{13}}[/mm] solcher Funktionen gibt. Aber wie
> zum Henker bestimme ich nun d und m?!
>  
> Danke!

Hallo, das Thema ist mir völlig neu, aber wie du das beschreibst, muss  [mm]2^{2^{13}}=m\cdot10^d[/mm] gelten.
Du musst hier einfach den Logarithmus zur Basis 10 bilden.
Der liegt für den Term [mm] 2^{2^{13}} [/mm] zwischen d und d+1.
Konkret gilt
[mm] lg{2^{2^{13}}}=d+lg{m}. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]