Anfangswertproblem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:42 Sa 26.03.2011 | Autor: | David90 |
Aufgabe | Lösen Sie das Anfangswertproblem [mm] \bruch{d \vec{y}}{dt}(t)=A \vec{y}(t) [/mm] für [mm] \vec{y_{0}}= \vec{y}(3) [/mm] = [mm] \vektor{1 \\ 1 \\ -1}. [/mm] |
Hi Leute,
also ich versteh Anfangswertprobleme generell nich, obwohl das ja nich so schwer ist und das sind dann verschwendete Punkte in der Klausur :O
Also für die Aufgabe muss man ja [mm] \vec{y}(t)=Se^{(t-t_{0})D} S^{-1} \vec{y_{0}} [/mm] benutzen...aber wie benutzt man denn für die Aufgabe S und D?
S und D wurden übrigens in der Aufgabe davor berechnet: [mm] S=\pmat{ 1 & 1 & -\bruch{3}{5}\\ 1 & 2 & 0 \\ -1 & 0 & 1 } [/mm] und [mm] D=\pmat{ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 }.
[/mm]
Gruß David
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:15 Sa 26.03.2011 | Autor: | fred97 |
Wo ist das Problem ? Du mußt doch nur einsetzen ! S und D hast Du, es ist [mm] t_0=3 [/mm] und [mm] \vec{y_{0}} [/mm] hast Du auch.
Berechne [mm] e^{(t-t_{0})D} [/mm] , dann [mm] Se^{(t-t_{0})D} S^{-1} [/mm] und dann
$ [mm] \vec{y}(t)=Se^{(t-t_{0})D} S^{-1} \vec{y_{0}} [/mm] $
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:11 Sa 26.03.2011 | Autor: | David90 |
ja aber in der Musterlösung steht: Da der Anfangswert [mm] y_{0} [/mm] ein Eigenvektor von A zum Eigenwert -1 ist, ist die Lösung gegeben durch
[mm] \ve{y}(t)=e^{(-1)(t-3)} \vektor{1 \\ 1 \\ -1}= e^{(3-t)} \vektor{1 \\ 1 \\ -1}.
[/mm]
Hab man meine Notizen durchgeblättert und hab das Wort Eigenvektormethode gefunden. Was ist denn das und kann man damit auch das Anfangswertproblem lösen?
P.S. die Eigenvektoren zum Eigenwert [mm] \lambda_{1/2} [/mm] sind [mm] \vektor{1 \\ 1 \\ -1} [/mm] und [mm] \vektor{1 \\ 2 \\ 0}. [/mm] Wo steht denn da ne 3?:O
Gruß David
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:38 Sa 26.03.2011 | Autor: | ullim |
Hi,
die Lösung ist ja gegeben als
(I) [mm] y(t)=e^{A*(t-t_0)}*y_0 [/mm] mit [mm] y_0=\vektor{1 \\ 1 \\ -1} [/mm] und [mm] t_0=3 [/mm] sowie [mm] A=S*D*S^{-1}
[/mm]
setzt man A in (I) ein folgt
(II) [mm] y(t)=S*e^{D*(t-t_0)}*S^{-1}*y_0
[/mm]
und setzt man D, [mm] y_0 [/mm] sowie [mm] t_0 [/mm] ein folgt [mm] y(t)=S\cdot \pmat{ e^{-(t-3)} & 0 & 0 \\ 0 & e^{-(t-3)} & 0 \\ 0 & 0 & 1}\cdot S^{-1}\cdot \vektor{1 \\ 1 \\ -1}=\vektor{e^{-t+3} \\ e^{-t+3} \\ -e^{-t+3}} [/mm] also wie in der Musterlösung angegegen.
(I) kann man auch schreiben als
[mm] y(t)=\summe_{n=0}^{\infty}\bruch{A^n*(t-t_0)^n}{n!}*y_0
[/mm]
Weil [mm] y_0 [/mm] Eigenvektor von A zum Eigenwert -1 ist folgt
[mm] y(t)=\summe_{n=0}^{\infty}\bruch{(-1)^n*(t-t_0)^n}{n!}*y_0=e^{-t+3}*y_0=\vektor{e^{-t+3} \\ e^{-t+3} \\ -e^{-t+3}}
[/mm]
Also in beiden Fällen erhält man das gleiche Ergebnis.
|
|
|
|