www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Analytische Funktion
Analytische Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Funktion: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 13:48 Do 29.10.2009
Autor: Alaizabel

Aufgabe
Warum gilt: [mm] \cosz=0 [/mm] nur wenn [mm] z=(2*k+1)*\pi [/mm]

Hallo :)

hier meine letzte Frage zu analytischen Funktionen :)

also [mm] \cos [/mm] ist null bei allen vielfachen von [mm] \pi, [/mm] das ist mir bewusst.
deshalb würde ich [mm] 2k*\pi [/mm] noch verstehen, aber was sagt mir diese 1?
und warum ist das so?

Vielen lieben Dank für eure Mühen,

liebste Grüße :)

        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Do 29.10.2009
Autor: Gonozal_IX

Hiho,

also cos ist 0 bei [mm] \bruch{\pi}{2}, [/mm] bei vielfachen von [mm] \pi [/mm] ist es [mm] $\pm [/mm] 1$.
Also irgendwas stimmt bei deiner Aufgabe nicht.

mFG,
Gono.



Bezug
                
Bezug
Analytische Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 29.10.2009
Autor: Alaizabel

Hallo Gono,

vielen Dank für deine Antwort, sry, da hab ich mal wieder alles durcheinander geschmissen :D

aber wenn k nun z.b. für [mm] \bruch{1}{4} [/mm] stehen würde passts ja wieder (ich weiß leider nicht wofür das k steht). Dann wäre [mm] (2*\bruch{1}{4}+1)\pi [/mm]
also [mm] x=(2*k+1)\pi [/mm] und y=0

Liebe Grüße und Danke für deine Hilfe :)

Liebe Grüße :)

Bezug
                        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 29.10.2009
Autor: fred97

Deine Aufgabe sollte wohl so lauten:

              $ cos(z) = 0 [mm] \gdw [/mm] z = [mm] \bruch{1}{2}(2k+1) \pi$ [/mm]   (k [mm] \in \IZ) [/mm]

FRED

Bezug
                        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Do 29.10.2009
Autor: MatheOldie

Hallo Aizabel,

2k+1 , k aus Z, gibt eine ungerade Zahl an.
2k , k aus Z gibt eine gerade Zahl an.

Mit der Formulierung von Fred werden also alle ungeradzahligen Vielfachen von Pi/2 charakterisiert.

Gruß, MatheOldie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]