Allg. zu globalen Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:07 Fr 05.07.2013 | Autor: | Herbart |
Hallo,
ich habe eine Frage zu globalen Extrema bei Fkt. [mm]f:\IR^n\to\IR[/mm].
Ich habe eine Fkt. mehrerer Variablen, die allerdings als Definitionsbereich eine abgeschlossene Teilmenge des [mm] \IR^n [/mm] hat, z.B. eine Kugel mit Rand. Wenn ich die Extremstellen mit den Nullstellen des Gradienten [mm]\nabla f[/mm] herausgefunden habe (dann Hesse-Matrix usw.) und schließlich die Kandidaten für Randextrema identifiziert habe (z.B. mittels Parametrisierung o.ä.), was muss ich dann tun um z.zg., dass ein bestimmtes Randextremum globale Max./Min.-stelle ist?
Reicht es die Werte [mm]f(Randextremum)[/mm] mit [mm]f(Extremstellen)[/mm] zu vergleichen und festzustellen, dass im Falle eines glob. Max. [mm]f(Extremstellen)
Oder muss ich wirklich zeigen, dass [mm]f(x)
MfG Herbart
|
|
|
|
> Hallo,
>
> ich habe eine Frage zu globalen Extrema bei Fkt.
> [mm]f:\IR^n\to\IR[/mm].
> Ich habe eine Fkt. mehrerer Variablen, die allerdings als
> Definitionsbereich eine abgeschlossene Teilmenge des [mm]\IR^n[/mm]
> hat, z.B. eine Kugel mit Rand. Wenn ich die Extremstellen
> mit den Nullstellen des Gradienten [mm]\nabla f[/mm] herausgefunden
> habe (dann Hesse-Matrix usw.) und schließlich die
> Kandidaten für Randextrema identifiziert habe (z.B.
> mittels Parametrisierung o.ä.), was muss ich dann tun um
> z.zg., dass ein bestimmtes Randextremum globale
> Max./Min.-stelle ist?
> Reicht es die Werte [mm]f(Randextremum)[/mm] mit [mm]f(Extremstellen)[/mm]
> zu vergleichen und festzustellen, dass im Falle eines glob.
> Max. [mm]f(Extremstellen)
> Oder muss ich wirklich zeigen, dass
> [mm]f(x)
>
> MfG Herbart
Du willst zeigen dass du am Rand ein globales Max hast?
Nun ja du ermittels die Extrema auf der offenen Menge durch 0 setzen der partiellen Ableitungen - dann betrachtest du was am Rand passiert.
Sollte der Funktionswert des Randpunktes > der Maximumsstellen der Funktion auf der offenen Menge sein dann hast du deine Antwort doch schon oder?
[mm]f(x)
Ein lokales Maximum bedeutet doch: Dass der Wert der Funktion in einer Umgebung keine größeren Wert annimt. Wenn du also alle lokalen Extrema auf der offenen Menge bestimmst dann impliziert das, dass keine "größeren" Werte als an den Extremstellen angenommen werden können. Insofern musst du natürlich andere Punkte nicht mehr beachten - also du kannst dir: [mm]f(x)
Vergleich der Extrema mit dem Rand genügt.
Gruß
Thomas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:40 Fr 05.07.2013 | Autor: | Herbart |
Vielen Dank für deine Erklärung. Besonders
> Ein lokales Maximum bedeutet doch: Dass der Wert der
> Funktion in einer Umgebung keine größeren Wert annimt.
> Wenn du also alle lokalen Extrema auf der offenen Menge
> bestimmst dann impliziert das, dass keine "größeren"
> Werte als an den Extremstellen angenommen werden können.
> Insofern musst du natürlich andere Punkte nicht mehr
> beachten - also du kannst dir: [mm]f(x)
> sparen.
war sehr hilfreich. Danke.
MfG Herbart
|
|
|
|