www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Algebra - Hauptideale
Algebra - Hauptideale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebra - Hauptideale: Frage
Status: (Frage) beantwortet Status 
Datum: 14:20 So 14.11.2004
Autor: Floyd

Folgendes Problem:

Sei R ein Ring a,b Elemente von R. Dann gilt (ab) Teilmenge von (a)(b). Wenn R kommutativ ist, dann gilt (ab)=(a)(b).

(Wobei R möglicherweise ohne 1)

Wie beweist man das 'schnell'?

wenn R kommutativ mit 1 dann sollte es wie folgt funktionieren
Ra Rb = R(Ra)b = Rab

aber wenn R ohne 1 dann gilt ja:
(a) = {na + ra + as + sum(r(i)*a*s(i),i,1,m) | r(i),s(i),r,s Elemente von R, n Element von den ganzen Zahlen, m Element der natürlichen Zahlen}

und das Produkt von Hauptidealen ist überdies ja auch noch def. als:
I*J={sum(i(k)*j(k),k,1,n) | i(k) elem. von I, j(k) elem. von J}

somit würde dieser Beweis ja ziemlich lange werden!
geht das denn nicht schneller??

mfg Floyd

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Algebra - Hauptideale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Di 16.11.2004
Autor: Julius

Hallo Floyd!

Wenn ich mich mal ganz exakt an deine Definitionen halte, dann folgt für ein beliebiges

$n(ab) + r(ab) + (ab)s + [mm] \sum\limits_{i=1}^m [/mm] r(i) (ab)s(i) [mm] \in [/mm] (ab)$:

$n(ab) + r(ab) + (ab)s + [mm] \sum\limits_{i=1}^m [/mm] r(i) (ab)s(i)$

$= [mm] \underbrace{(na)}_{\in (a)} \underbrace{b}_{\in (b)} [/mm] + [mm] \underbrace{(ra)}_{\in (a)} \underbrace{b}_{\in (b)} [/mm] + [mm] \underbrace{a}_{\in (a)}\underbrace{(bs)}_{\in (b)} [/mm] + [mm] \sum\limits_{i=1}^m \underbrace{(r(i)a)}_{\in (a)} \underbrace{(bs(i))}_{\in (b)}$ [/mm]

[mm] $\in [/mm] (a)(b)$,

oder?

Viele Grüße
Julius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]