www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Aequivalenzrelation
Aequivalenzrelation < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aequivalenzrelation: Relationen
Status: (Frage) beantwortet Status 
Datum: 23:13 Sa 03.11.2012
Autor: Melisa

Aufgabe
Hallo an alle,
wie immer, sitze ich samstags am PC und mache meine Aufgaben und wie immer habe ich Probleme :(
Meine Aufgabe lautet:
Gegeben sei eine Menge S von Bewohnerinnen und Bewohnern des Saarlandes, wobei
wir der Einfachheit halber annehmen, dass keine zwei Personen in S exakt gleiche
Körpergröße haben. Wir definieren für x,y [mm] \in [/mm] S folgende Relationen:
• x R1 y: x ist mindestens gleich groß wie y
• x R2 y: x ist mindestens gleich groß oder mindestens gleich schwer wie y
• x R3 y: x hat dieselbe Mutter wie y
• x R4 y: x hat denselben Onkel wie y
Stellen Sie für jede der Relationen fest, ob es sich um eine Äquivalenzrelation handelt.

Meine Idee:
R1 ist Äquivalenzrelation,weil
a) x  ist mindestens gleich groß wie x und y ist mindestens gleich groß wie y => Reflexivitaet
b) x R1 y => y R1 x=> Symmetrie
c) wenn x R1 y und Y R1 z => x R1 z  also R1 ist Äquivalenzrelation

R2 weiss ich net, und vieleicht kann mir jemand erklaeren
R3 ist Äquivalenzrelation
und auch R4 weiss ich net :(
Leutee helft mir bitte :)

        
Bezug
Aequivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 So 04.11.2012
Autor: tobit09

Hallo Melisa,


>  Meine Idee:
>  R1 ist Äquivalenzrelation,weil
> a) x  ist mindestens gleich groß wie x und y ist
> mindestens gleich groß wie y => Reflexivitaet

Bei der Reflexivität geht es um die Frage, ob jeder Saarländer mit sich selbst in Relation steht.

Sei also [mm] $x\in [/mm] S$ ein Saarländer. Gilt dann stets $x [mm] R_1 [/mm] x$, d.h. ist x mindestens so groß wie x?


>  b) x R1 y => y R1 x=> Symmetrie

Wählen wir mal zwei verschiedene Saarländer aus (das Saarland mag zwar klein sein, aber mindestens zwei Bewohner dürfte es haben ;-) ).
Nach der Annahme aus der Aufgabenstellung sind die beiden nicht gleich groß. Nennen wir den größeren von beiden mal x und den kleineren von beiden y.

Dann gilt x R1 y (denn x ist mindestens so groß wie y), aber nicht y R1 x (denn y ist nicht mindestens so groß wie x).

Also ist R1 nicht symmetrisch.

>  c) wenn x R1 y und Y R1 z => x R1 z

Begründung: Wenn x mindestens so groß wie y und y mindestens so groß wie z ist, ist x mindestens so groß wie z.


> R2 weiss ich net, und vieleicht kann mir jemand erklaeren

Reflexivität hieße: Für alle [mm] $x\in [/mm] S$ gilt x R2 x, d.h. jeder Saarländer ist mindestens so groß oder mindestens so schwer wie er selbst.

Symmetrie hieße: Für alle [mm] $x,y\in [/mm] S$ mit x R2 y gilt y R2 x, d.h. wannimmer man zwei Saarländer hernimmt, so dass der eine mindestens so groß oder mindestens so schwer wie der andere ist, ist der andere mindestens so groß oder mindestens so schwer wie der eine.

>  R3 ist Äquivalenzrelation

[ok]

>  und auch R4 weiss ich net :(

Ich finde die Definition von R4 nicht ganz eindeutig. Ich interpretiere sie so, dass x R4 y bedeutet, dass x und y mindestens einen Onkel gemeinsam haben.

Reflexivität hieße: Für alle [mm] $x\in [/mm] S$ gilt $x R4 x$, d.h. jeder Saarländer hat mit sich selbst mindestens einen Onkel gemeinsam. Ist das der Fall?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]