www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abzählbarkeit von Mengen
Abzählbarkeit von Mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbarkeit von Mengen: Ist R abzählbar?
Status: (Frage) beantwortet Status 
Datum: 19:49 So 28.10.2007
Autor: sunshinekid

Ich hab da mal ne Frage.

Wir haben gezeigt bekommen, dass man die reellen Zahlen wegen des cantorschen Diagonalsatzes nicht abzählen kann. Wenn ich aber wie bei den rationalen Zahlen vorgehe, dann geht das doch aber eigentlich:

Sei das Intervall [0;1) gegeben. Dann kann ich die Zahlen in einem Baumdiagramm darstellen:

0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 ...
usw. Dann kann ich wieder anfangen abzuzählen:

1 [mm] \mapsto [/mm] 0
2 [mm] \mapsto [/mm] 0,1     (0,0 wird ausgelassen, da 0,0=0)
3 [mm] \mapsto [/mm] 0,2
4 [mm] \mapsto [/mm] 0,3
5 [mm] \mapsto [/mm] 0,4
6 [mm] \mapsto [/mm] 0,5
7 [mm] \mapsto [/mm] 0,6
8 [mm] \mapsto [/mm] 0,7
9 [mm] \mapsto [/mm] 0,8
10 [mm] \mapsto [/mm] 0,9
11 [mm] \mapsto [/mm] 0,01
12 [mm] \mapsto [/mm] 0,02
...

        
Bezug
Abzählbarkeit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 30.10.2007
Autor: leonhard

Die Zahlen, die du hier aufzählst sind allesamt rational.
Aber du zählst nicht einmal alle rationalen Zahlen ab: an welcher Stelle kommt denn [mm] $\frac{1}{3}$? [/mm]




Bezug
                
Bezug
Abzählbarkeit von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Di 30.10.2007
Autor: Gilga

Bei solchen Beweisen muss man aufpassen.
Sind 2 Mengen gleichmächtig so muss man eine bijektive Abb. angeben.
Bei 1/3 kann man keine natürliche Zahl angeben die nach deiner Aufzählung dies je schafft.

Der Widerspruchsbeweis liefert eine tiefere Einsicht.

Bezug
                        
Bezug
Abzählbarkeit von Mengen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Mi 31.10.2007
Autor: sunshinekid

ok. Danke euch beiden.

Genau nach sowas hab ich gesucht. Mir ist einfach keine Zahl eingefallen, die ich nicht so darstellen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]