www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Abzählbarkeit
Abzählbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbarkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 02.11.2004
Autor: Fry

Aufgabe: Zeigen Sie durch Induktion nach n: Sind n,m [mm] \in [/mm] |N und ist f:
f : {1,2,....,n} -> {1,2,....,m} eine bijektive Abbildung, so gilt n = m.
Folgern Sie, dass für endliche Menge die Zahl |M| wohldefiniert ist.

Meine Lösung: (f: X -> Y)

Induktionsanfang: n=1:
{1} -> {1,2,...,m}
Soll die Funktion bijektiv sein, so muss es für jedes y [mm] \in [/mm] Y ein x [mm] \in [/mm] X geben und es folgt, dass jedem x [mm] \in [/mm] X genau ein y [mm] \in [/mm] Y zugeordnet werden muss.
Deshalb muss m = 1 sein. Somit stimmt die Aussage für n = 1.
Induktionsvoraussetzung: Sei die Aussage für ein n wahr,....
Induktionsschluss: ... dann folgt daraus, dass bei einer Erweiterung der n-elementigen Menge X um das Element n+1 für eine eineindeutige Zuordnung Y ein weiteres Element m+1 erhalten muss.
Da die Menge endlich ist, gibt es auch nur endlich viele Elemente und per definitionem gibt es eine bijektive Funktion g: {1,2,...n} -> M, die jedem Element von M eine natürliche Zahl n zuordnet. Wie wir oben herausgefunden haben, hat bei einer bijektiven Abbildung der Definitionsbereich genauso viele Elemente wie die Wertemenge. Bei dem oben angegebenen Definitionsbereich hat M also die Mächtigkeit n.

Stimmt das so ? Bei der Induktion habe ich arge Zweifel...würde mich über Feedback freuen :=) Danke im Voraus !

Grüße
Fry


        
Bezug
Abzählbarkeit: Induktion
Status: (Antwort) fertig Status 
Datum: 01:37 Do 04.11.2004
Autor: Hugo_Sanchez-Vicario

Hallo Fry,

dein Beweis scheint mir einleuchtend und richtig.


Was ist denn mit der Wohldefiniertheit von |M|?

Welche Gedanken hast du dir darüber schon gemacht?

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]