www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Abzählbare Basis
Abzählbare Basis < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbare Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Mo 29.08.2011
Autor: blascowitz

Aufgabe
Sei $X$ ein topologischer Raum mit abzählbarer Basis [mm] $O_{i}, \; i\in \IN$. [/mm] Dann existiert zu jeder offenen Überdeckung [mm] $X=\bigcup_{\alpha \in A} U_{\alpha}$ [/mm] eine abzählbare Teilüberdeckung.

Hallo erstmal

beim Beweis dieses Lemmas haperts ein bisschen.

Also jedes [mm] $U_{\alpha}$ [/mm] lässt sich darstellen als [mm] $U_{\alpha}=\bigcup_{i \in I_{\alpha}} O_{i}$ [/mm] mit [mm] $I_{\alpha} \subseteq \IN [/mm] $

Also ist [mm] $X=\bigcup_{\alpha \in A} U_{\alpha}=\bigcup_{i \in \bigcup_{\alpha} I_{\alpha}}O_{i}$. [/mm]

Setze [mm] $I:=\bigcup_{\alpha} I_{\alpha}$ [/mm]

Für jedes $i [mm] \in [/mm] I$ wähle [mm] $\alpha_{i}$ [/mm] mit $i [mm] \in I_{\alpha_{i}}$ [/mm] also [mm] $O_{i} \subseteq U_{\alpha_{i}}$. [/mm]

Es folgt
[mm] $X=\bigcup_{i \in I} O_{i} \subseteq \bigcup_{i \in I} U_{\alpha_{i}} \subseteq [/mm] X$

Mein Problem ist, dass ich nicht sehe, das hier nur abzählbar viele [mm] $\alpha_{i}$ [/mm] gebraucht werden. Woran sehe ich das.

Viele Dank für die Hilfe
Blasco

        
Bezug
Abzählbare Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mo 29.08.2011
Autor: felixf

Moin Blasco!

> Sei [mm]X[/mm] ein topologischer Raum mit abzählbarer Basis [mm]O_{i}, \; i\in \IN[/mm].
> Dann existiert zu jeder offenen Überdeckung
> [mm]X=\bigcup_{\alpha \in A} U_{\alpha}[/mm] eine abzählbare
> Teilüberdeckung.
>  Hallo erstmal
>  
> beim Beweis dieses Lemmas haperts ein bisschen.
>  
> Also jedes [mm]U_{\alpha}[/mm] lässt sich darstellen als
> [mm]U_{\alpha}=\bigcup_{i \in I_{\alpha}} O_{i}[/mm] mit [mm]I_{\alpha} \subseteq \IN[/mm]
>
> Also ist [mm]X=\bigcup_{\alpha \in A} U_{\alpha}=\bigcup_{i \in \bigcup_{\alpha} I_{\alpha}}O_{i}[/mm].
>
> Setze [mm]I:=\bigcup_{\alpha} I_{\alpha}[/mm]
>  
> Für jedes [mm]i \in I[/mm] wähle [mm]\alpha_{i}[/mm] mit [mm]i \in I_{\alpha_{i}}[/mm]
> also [mm]O_{i} \subseteq U_{\alpha_{i}}[/mm].
>  
> Es folgt
> [mm]X=\bigcup_{i \in I} O_{i} \subseteq \bigcup_{i \in I} U_{\alpha_{i}} \subseteq X[/mm]
>  
> Mein Problem ist, dass ich nicht sehe, das hier nur
> abzählbar viele [mm]\alpha_{i}[/mm] gebraucht werden. Woran sehe
> ich das.

Die Menge $I$ ist ja abzaehlbar.

Weiterhin gibt es zu jedem $i [mm] \in [/mm] I$ ein [mm] $\alpha_i$ [/mm] mit [mm] $O_i \subseteq U_{\alpha_i}$. [/mm] Damit ist [mm] $\bigcup_{i \in I} O_i \subseteq \bigcup_{i \in I} U_{\alpha_i}$. [/mm]

LG Felix


Bezug
                
Bezug
Abzählbare Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Mo 29.08.2011
Autor: blascowitz

Das Brett vorm Kopf hat sich gerade gelöst, danke schön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]