www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand Punkt Gerade mit Param
Abstand Punkt Gerade mit Param < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt Gerade mit Param: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Do 31.03.2022
Autor: hase-hh

Aufgabe
Gegeben ist eine Gerade g und ein Punkt P.

g: [mm] \vec{x} [/mm] = [mm] \vektor{4 \\ 3 \\ -1} [/mm] + [mm] r*\vektor{1 \\ -2 \\ 1} [/mm]

P ( 8 / p / 5 )


Bestimme p so, dass der Punkt P von der Geraden g den Abstand 5 hat.


Moin, Moin!

Ich möchte die Aufgabe über das Lotfußpunktverfahren lösen.


1. Ich bilde den Vektor [mm] \overrightarrow{PF}, [/mm] in dem ich einen allgemeinen Geradenpunkt verwende.

[mm] \overrightarrow{PF} [/mm] = [mm] \vektor{4 \\ 3 \\ -1} [/mm] + [mm] r*\vektor{1 \\ -2 \\ 1} [/mm] - [mm] \vektor{8 \\ p \\ 5} [/mm]


[mm] \overrightarrow{PF} [/mm] = [mm] \vektor{ -4 \\ 3-p \\ -6} [/mm] + [mm] r*\vektor{1 \\ -2 \\ 1} [/mm]


2. Lotfußpunkt herausfinden

Da [mm] \overrightarrow{PF} [/mm] orthogonal zur Geraden g und damit zum Richtungsvektor [mm] \vec{v} [/mm] verlaufen muss, gilt:

[mm] \overrightarrow{PF}*\vec{v} [/mm] = 0


[mm] [\vektor{ -4 \\ 3-p \\ -6} [/mm] + [mm] r*\vektor{1 \\ -2 \\ 1}]*\vektor{1 \\ -2 \\ 1} [/mm] = 0


-4 + r -6 +2p +4r -6 +r = 0

6r -16 +2p = 0

r = [mm] \bruch{8}{3} -\bruch{1}{3}p [/mm]


Der Lotfußpunkt lautet:


[mm] \overrightarrow{OF} [/mm] = [mm] \vektor{4 \\ 3 \\ -1} [/mm] + [mm] (\bruch{8}{3} -\bruch{1}{3}p)*\vektor{1 \\ -2 \\ 1} [/mm]

[mm] \overrightarrow{OF} [/mm] = [mm] \vektor{\bruch{20}{3} - \bruch{1}{3}p \\ - \bruch{7}{3} + \bruch{2}{3}p\\ \bruch{5}{3} -\bruch{1}{3}p} [/mm]


3. [mm] \overrightarrow{PF} [/mm] bilden

[mm] \overrightarrow{PF} [/mm] = [mm] \vektor{\bruch{20}{3} - \bruch{1}{3}p \\ - \bruch{7}{3} + \bruch{2}{3}p\\ \bruch{5}{3} -\bruch{1}{3}p} [/mm] - [mm] \vektor{8 \\ p \\ 5} [/mm]

[mm] \overrightarrow{PF} [/mm]  = [mm] \vektor{ - \bruch{4}{3} - \bruch{1}{3}p \\ - \bruch{7}{3} - \bruch{1}{3}p\\ - \bruch{10}{3} -\bruch{1}{3}p} [/mm]


4. Abstand bzw. p berechnen


| [mm] \overrightarrow{PF} [/mm] | = [mm] \wurzel{(- \bruch{4}{3} - \bruch{1}{3}p)^2 + (- \bruch{7}{3} - \bruch{1}{3}p)^2 + (- \bruch{10}{3} -\bruch{1}{3}p)^2} [/mm]  = 5    | [mm] ()^2 [/mm]


(- [mm] \bruch{4}{3} [/mm] - [mm] \bruch{1}{3}p)^2 [/mm] + (- [mm] \bruch{7}{3} [/mm] - [mm] \bruch{1}{3}p)^2 [/mm] + (- [mm] \bruch{10}{3} -\bruch{1}{3}p)^2 [/mm]  = 25


[mm] \bruch{16}{9} +\bruch{8}{9}p [/mm] + [mm] \bruch{1}{9}p^2 [/mm]  + [mm] \bruch{49}{9} +\bruch{14}{9}p [/mm] + [mm] \bruch{1}{9}p^2 [/mm] + [mm] \bruch{100}{9} +\bruch{20}{9}p [/mm] + [mm] \bruch{1}{9}p^2 [/mm]  = 25


[mm] \bruch{55}{3} +\bruch{14}{3}p [/mm] + [mm] \bruch{1}{3}p^2 [/mm] = 25

[mm] \bruch{1}{3}p^2 +\bruch{14}{3}p [/mm] + [mm] \bruch{55}{3} [/mm] = 25

[mm] \bruch{1}{3}p^2 +\bruch{14}{3}p [/mm] - [mm] \bruch{20}{3} [/mm] = 0

[mm] p^2 [/mm]  +14p - 20 = 0   [ korrigiert s. Antwort ]

[mm] p_1 [/mm] = 1,31

[mm] P_2 [/mm] = -15,31



Richtig?


Danke & Gruß


        
Bezug
Abstand Punkt Gerade mit Param: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Do 31.03.2022
Autor: HJKweseleit


>
> Richtig?
>  

Ja, alles richtig, nur zuletzt steht da [mm] p^2 [/mm]  + [mm] \14p [/mm] - 20 = 0 statt [mm] p^2 [/mm]  + [mm] \red{1}4p [/mm] - 20 = 0, liegt aber am überflüssigen backslash, Ergebnis ist trotzdem richtig.


Schneller und sicherer geht die Lotfußbestimmung aber mit der Ebenengleichung in Normalenform, falls du die schon kennst:

Lass g senkrecht durch eine zunächst beliebige Ebene gehen. Dann ist der Richtungsvektor von g ein Normalenvektor, und die Ebene hat die Gleichung

x - 2y + z - e = 0 mit unbekanntem e.

Diese Ebene schiebst du in Gedanken so lange an g entlang, bis P in dieser Ebene liegt. Dabei verändert sich nur e. Wenn P in der Ebene liegt, erfüllen seine Koordinaten die Ebenengleichung, und es wird

x - 2y + z - e = 8 - 2p + 5 - e = 0, also e = 13 - 2p.

Damit heißt nun die Ebenengleichung x - 2y + z -13 + 2p =0

Setzt du darin die Koordinaten von g ein, erhältst du den Lotfußpunkt:

(4+r) - 2(3-2r) + (-1+r) - 13 + 2p = 0
4 - 6 - 1 - 13 + r + 4r + r + 2p = 0
6r - 16 + 2p = 0
r = 8/3 - p/3

Rest wie bei dir.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]