www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Abstand
Abstand < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Di 29.05.2012
Autor: Laura87

Aufgabe
a) Sei V ein euklidischer Raum. Zeigen sie, dass es zu je zwei Punkten x ,y [mm] \in [/mm] V einen eindeutig besmmten Punkt m(x,y) gibt, der [mm] d(x,m(x,y))=d(y,m(x,y))=\bruch{1}{2}d(x,y) [/mm] erfüllt. Dieser heißt Mittelpunkt von x und y.

b) Sei W ein Vektorraum und sei d: WxW -> [mm] \IR [/mm] def. durch [mm] d(x,y):=1-\delta_{xy}. [/mm] Zeigen Sie, dass d eine Metrik ist und dass es in (W,d) keinen eindeutig besimmten Mittelpunkt zwischen zwei Punkten x [mm] \=not [/mm] y gibt. Was ist mir x=y?

Hallo,

ich komme bei der a) irgendwie nicht weiter:

mit [mm] m(x,y):=\bruch{1}{2}(x+y) [/mm] habe ich bis jetzt:

[mm] d(x,m(x,y)=\parallel [/mm] x - [mm] (\bruch{1}{2}x+\bruch{1}{2}y) \parallel [/mm] = [mm] \parallel \bruch{1}{2} [/mm] x - [mm] \bruch{1}{2}y \parallel [/mm] = [mm] \bruch{1}{2} [/mm] d(x,y)

hier würde ich schreiben

= [mm] \parallel \bruch{1}{2} \parallel [/mm] x-y [mm] \parallel \parallel [/mm]

aber in der Lösung steht:

= [mm] \parallel [/mm] y- [mm] \bruch{1}{2}(x+y) \parallel [/mm]

wie kommt man darauf?


Danke schon einmal im Voraus

Gruß Laura

        
Bezug
Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Di 29.05.2012
Autor: fred97

[mm] $||y-\bruch{1}{2}(x+y)||= ||\bruch{1}{2}y-\bruch{1}{2}x||=\bruch{1}{2}||y-x||=\bruch{1}{2}||x-y||$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]