Abstände von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:06 Mi 30.09.2009 | Autor: | Gateler |
Aufgabe | Zwei Schiffe S1 und S2 begegnen sich auf dem offenen Meer. Beide fahren mit konstanter Geschwindigkeit und halten einen geradlinigen Kurs. S1 befindet sich zu Beginn der Beobachtung auf der Position A(-3/1) und fährt mit einer Geschwindigkeit von [mm] 15\bruch{km}{h} [/mm] in Richtung [mm] \vec{u}=\vektor{4\\ 3}. [/mm] Zu Beobachtungsbeginn befindet sich S2 auf Position B(2/3) und fährt mit [mm] 20\bruch{km}{h} [/mm] in Richtung [mm] \vec{v}=\vektor{-1\\ 0}.
[/mm]
Wie viele Minuten nach Beobachtungsbegin kommen die Schiffe sich am nächsten? Wo befinden sie sich dann und wie groß ist die kleinste Entfernung? |
Also die Bildung der Funktionstherme macht mir keine Probleme. Jedoch weiß ich nicht wie ich den Punkt mit dem geringsten Abstand berechnen soll.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Gateler,
> Zwei Schiffe S1 und S2 begegnen sich auf dem offenen Meer.
> Beide fahren mit konstanter Geschwindigkeit und halten
> einen geradlinigen Kurs. S1 befindet sich zu Beginn der
> Beobachtung auf der Position A(-3/1) und fährt mit einer
> Geschwindigkeit von [mm]15\bruch{km}{h}[/mm] in Richtung
> [mm]\vec{u}=\vektor{4\\ 3}.[/mm] Zu Beobachtungsbeginn befindet sich
> S2 auf Position B(2/3) und fährt mit [mm]20\bruch{km}{h}[/mm] in
> Richtung [mm]\vec{v}=\vektor{-1\\ 0}.[/mm]
> Wie viele Minuten nach Beobachtungsbeginn kommen die
> Schiffe sich am nächsten? Wo befinden sie sich dann und
> wie groß ist die kleinste Entfernung?
> Also die Bildung der Funktionstherme
das sind Terme (ohne h), nicht Therme !
> macht mir keine
> Probleme. Jedoch weiß ich nicht wie ich den Punkt mit dem
> geringsten Abstand berechnen soll.
Wenn du also die Position von S1 und S2 zum Zeitpunkt
t durch x-y-Koordinaten darstellen kannst, so kannst du
mittels Pythagoras auch die Distanz d(t) zwischen den Schiffen
durch eine Formel mit t darstellen. Am besten betrachtest
du dann das Quadrat [mm] Q(t)=(d(t))^2. [/mm] Suche dann den Wert
t, für welchen die Funktion Q(t) ihren kleinstmöglichen
Wert annimmt. Genau für diesen t-Wert ist auch d(t) minimal.
LG Al-Chw.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:39 Mi 30.09.2009 | Autor: | weduwe |
ich habe dir dazu ein bilderl gemacht.
[mm] S_1^\prime [/mm] bzw. [mm] S_2^\prime [/mm] sind die positionen der schifferl, wenn das jeweils andere den schnittpunkt der routen erreicht
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|