www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Abschätzung, Normen
Abschätzung, Normen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung, Normen: Frage
Status: (Frage) beantwortet Status 
Datum: 14:51 Di 09.11.2004
Autor: red-m

Hallo ihr netten und hilfsbereiten Leute.

Es wäre wirklich hilfreich, wenn mir jemand einen kleinen Tipp für zwei (bestimmt) einfache Abschätzungen gibt. Es handelt sich dabei jeweils um Vektornormen.

1. [mm] \| x \|_1 \le \sqrt{n} \| x \|_2 [/mm]

2. [mm] \| x \|_\infty \le \| x \|_2 [/mm]

jeweils für [mm] x \in R^n [/mm]

Dabei handelt es sich bei [mm] \| x \|_\infty [/mm] um die Maximumsnorm, bei [mm] \| x \|_1 [/mm] um die Summennorm und bei [mm] \| x \|_2 [/mm] um die euklidische Norm.

Über schnelle Hilfe würde ich mich freuen.

Gruß

red-m

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abschätzung, Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Di 09.11.2004
Autor: Julius

Hallo red-m!

Es gilt:

[mm] $\Vert [/mm] x [mm] \Vert_1 [/mm] = [mm] \sum\limits_{i=1}^n \vert x_i \vert [/mm] = [mm] \sum\limits_{i=1}^n [/mm] 1 [mm] \cdot \vert x_i \vert [/mm] = [mm] \ldots$. [/mm]

Schaffst du es nun selber die Ungleichung mit Hilfe der Cauchy-Schwarz-Ungleichung

[mm] $\sum\limits_{i=1}^n a_i\, b_i \le \left( \sum\limits_{i=1}^n a_i^2 \right)^{\frac{1}{2}} \cdot \left( \sum\limits_{i=1}^n b_i^2 \right)^{\frac{1}{2}}$ [/mm]

zu Ende zu führen?

Zur zweiten Ungleichung:

Sei oBdA [mm] $\Vert [/mm] x [mm] \Vert_{\infty} [/mm] = [mm] \vert x_1\vert$. [/mm]

Dann gilt wegen [mm] $x_1^2 \le \sum\limits_{i=1}^n x_i^2$: [/mm]

[mm] $\Vert [/mm] x [mm] \Vert_{\infty} [/mm] = [mm] \vert x_1 \vert [/mm] = [mm] (x_1^2)^{\frac{1}{2}} \le \left( \sum\limits_{i=1}^n x_i^2 \right)^{\frac{1}{2}} [/mm] = [mm] \Vert [/mm] x [mm] \Vert_2$. [/mm]

Vielleicht hast du ja auch die Möglichkeit ein paar der vielen offenen Fragen zu beantworten.

Liebe Grüße
Julius

Bezug
                
Bezug
Abschätzung, Normen: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Di 09.11.2004
Autor: red-m

Die Antwort war wirklich hilfreich. Da hätte ich aber auch wirklich selber drauf kommen können. Naja nach zwei Stunden grübeln habe ich mir halt alles etwas komplizierter gemacht  als es ist.

Danke für die Antwort

Mit freundlichen Grüßen

red-m

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]