www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Ableitungen von Tensoren
Ableitungen von Tensoren < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen von Tensoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mo 08.08.2016
Autor: sanadros

Aufgabe
Bestimmen Sie für $ [mm] \hat{w}(v) [/mm] = [mm] \bruch{1}{2} [/mm] (v * v)v $:

b) die Ableitung $ [mm] \bruch{\partial \hat{w}(v)}{\partial v} [/mm] $ für krummlinige Koordinaten,

$  [mm] \bruch{\partial \hat{w}(v)}{\partial v} [/mm] = [mm] \bruch{\partial \overline{w}^{k}(v^{b}, \theta^{q})}{\partial v^{m}} g_{k} \otimes g_{m} [/mm]  $

OK ich komme so weit dass wir folgendes haben:

$ [mm] \bruch{1}{2} [/mm] ( [mm] v_{m}v^{k} [/mm] + [mm] v_{m}v^{k} [/mm] + [mm] \delta^{k}_{m}v_{i}v^{i}) g_k \otimes g^m [/mm] $

aus dem erste Teil ohne Kroneker Delta erhält man ja $ v [mm] \otimes [/mm] v $ aber der hintere Teil soll nach Musterlösung $ [mm] \bruch{1}{2}(v*v) \I1 [/mm] $ herauskommen. In der Musterlösung fliegt jedoch das Kroneker Delta raus und man erhält $ [mm] \bruch{1}{2}(v_{i}v^{i}) g_k \otimes g^m [/mm] = [mm] \bruch{1}{2}(v*v) \I1 [/mm] $. Nur ist mir nicht ganz klar wie man da drauf kommt.

        
Bezug
Ableitungen von Tensoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Di 09.08.2016
Autor: Chris84

Huhu,
kannst du kurz sagen, wie ihr das Punktprodukt und das Tensorprodukt definiert habt!?

Wie verschiebt ihr Indizes von oben nach unten!?

Gruss,
Chris

Bezug
                
Bezug
Ableitungen von Tensoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Mi 10.08.2016
Autor: sanadros

Also $ [mm] v*v:=v_{i}v_{i}:=v_{1}v_{1}+v_{2}v_{2}... [/mm] $

Dann das Tensorprodukt haben wie folgendermassen definiert:

$ (v [mm] \otimes [/mm] u) [a] := (u*a)v $

Heraufziehen von Indizes:

$ [mm] v^{i}=g^{ij}v_j [/mm] , [mm] g^{i}=g^{ij}g_j [/mm] $

Herunterziehen von Indizes:

$ [mm] v_{i}=g_{ij}v^j [/mm] , [mm] g_{i}=g_{ij}g^j [/mm] $

Wobei $ [mm] v_{i} [/mm] $ die Komponentent eines Vektors sind und $ [mm] g_{i} [/mm] $ die Basisvektoren sind. Und $ [mm] g_{ij} [/mm] $ die Metrikkoeffizienten sind.

Bezug
        
Bezug
Ableitungen von Tensoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 14.08.2016
Autor: Chris84


> Bestimmen Sie für [mm]\hat{w}(v) = \bruch{1}{2} (v * v)v [/mm]:
>  
> b) die Ableitung [mm]\bruch{\partial \hat{w}(v)}{\partial v}[/mm]
> für krummlinige Koordinaten,
>  
> [mm]\bruch{\partial \hat{w}(v)}{\partial v} = \bruch{\partial \overline{w}^{k}(v^{b}, \theta^{q})}{\partial v^{m}} g_{k} \otimes g_{m} [/mm]
>  
> OK ich komme so weit dass wir folgendes haben:
>  
> [mm]\bruch{1}{2} ( v_{m}v^{k} + v_{m}v^{k} + \delta^{k}_{m}v_{i}v^{i}) g_k \otimes g^m[/mm]
>  
> aus dem erste Teil ohne Kroneker Delta erhält man ja [mm]v \otimes v[/mm]
> aber der hintere Teil soll nach Musterlösung
> [mm]\bruch{1}{2}(v*v) \I1[/mm] herauskommen. In der Musterlösung
> fliegt jedoch das Kroneker Delta raus und man erhält
> [mm]\bruch{1}{2}(v_{i}v^{i}) g_k \otimes g^m = \bruch{1}{2}(v*v) \I1 [/mm].
> Nur ist mir nicht ganz klar wie man da drauf kommt.

Da sich sonst keiner meldet, versuche ich es mal (bin aber kein Experte, was Tensoren angeht):

1. Sicher, dass [mm] $a\cdot [/mm] b = [mm] a_i b_i$ [/mm] ist und nicht [mm] $a_i b^i$. [/mm] Ich frage, da der Term [mm] $v_i v^i$ [/mm] ja zu [mm] $v\cdot [/mm] v$ werden soll? (Ist vermutlich nur 'ne Definitionssache.)

2. Du hast Recht: [mm] $\delta^k_m$ [/mm] kann (schon wegen der Dimension) nicht verschwinden. Vielmehr muss es

[mm] $\delta^k_m g_k \otimes g^m [/mm] = [mm] g_m \otimes g^m$ [/mm]

lauten (einfach mal die Summe ausschreiben).

Dann ergibt die Summe der Tensorprodukte gerade die Einheitsmatrix (das war mir auch nicht ganz klar: Ist die 1 in [mm] $(v\cdot [/mm] v)1$ die Einheitsmatrix?) Ich denke da an sowas wie beim[]  dyadischen Produkt. In deinem Fall ergibt [mm] $g_m\otimes g^m$ [/mm] gerade eine Einsmatrix mit [mm] $1\in\IR$ [/mm] auf einem Diagonalelement und die Summe ueber verschiedener solcher Einsmatrizen gerade die Einheitsmatrix.

Hilft das?

Gruss,
Chris

Bezug
                
Bezug
Ableitungen von Tensoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Sa 20.08.2016
Autor: sanadros

Ja Danke das Hilft schon mal. Ja die $  [mm] \I1 [/mm] $ ist die Einheitsmatrix (und nicht die Einsmatrix). Das Skalarprodukt haben wir vor dem Herauf und Herunterziehen von Vektorkomponente kennen gelernt daher die Definition wie ich sie aus den den Aufzeichnungen abgeschrieben habe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]