www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ableitungen
Ableitungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage
Status: (Frage) beantwortet Status 
Datum: 10:22 Mo 04.04.2005
Autor: Kimi

Guten Morgen,
habe ein Problem mit folgenden Funktionen:
f(t)= x*e^tx+0,5,  die Ableitung ist dann ja [mm] x^2*e^tx+0,5 [/mm]
jetzt habe ich auch noch die Funktion
f(x)= x*e^tx+0,5, also fast genau so, warum muss ich denn hier jetzt die Kettenregel benutzen, so dass rauskommt: e^tx+0,5+tx*e^tx+0,5.
Wenn mir das jemand erklären könnte, wäre es super lieb.
Gruß Jule

        
Bezug
Ableitungen: Bitte Klammern setzen!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Mo 04.04.2005
Autor: Loddar

Guten Morgen Kimi!


> Guten Morgen,
>  habe ein Problem mit folgenden Funktionen:
>  f(t)= x*e^tx+0,5,  die Ableitung ist dann ja [mm]x^2*e^tx+0,5[/mm]
>  jetzt habe ich auch noch die Funktion
>  f(x)= x*e^tx+0,5, also fast genau so, warum muss ich denn
> hier jetzt die Kettenregel benutzen, so dass rauskommt:
> e^tx+0,5+tx*e^tx+0,5.

Hier ist leider völlig unklar, was im Exponenten steht und was nicht, oder womit z.B. x multipliziert wird ...

Bitte benutze doch unseren Formel-Editor, zumindest aber setze doch mal bitte entsprechende Klammern!

Gruß
Loddar


Bezug
        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mo 04.04.2005
Autor: mathrix

Hi,

ich sehe das Problem mit den Klammern genauso wie Loddar, glaube aber zu wissen, was gemeint ist, da ich im Augenblick, an ähnlichen Aufgaben sitze:

du willst f(t) = x * e^(tx) + 0,5 ableiten. Dazu muss man nur wissen, wie man e-Funktionen ableitet: Ich komme da auf folgendes Ergebnis:
f'(t) = [mm] x^2 [/mm] * e^(tx)      (das 0,5 fällt als absolutes Glied beim Ableiten weg)

Die zweite Funktion lautet: f(x) = x * e^(tx) + 0,5 . Hier muss man in der Tat die Kettenregel verwenden, da ja x die Funktionsvariable ist, nach der abgeleitet werden soll. Es handelt sich hier um ein Produkt aus x und e^(tx), also ist um es in allgemeiner Forum zu schreiben (u*v)' = (u' * v) + (u * v'), wobei in deinem (2. ) Fall u = x und v = e^(tx) gilt. Das absolute Glied 0,5 fällt beim Ableiten wieder weg. Damit müsstest du es jetzt selbst schaffen.

Es könnte aber auch sein, dass du f(x) = x * e^(tx + 0,5) meinst, dann musst du beim 2. Fall eben u = x und v = e^(tx + 0,5) (oder umgekehrt) nehmen und damit ableiten.

Jetzt vielleicht nochmal kurz was zum ersten Fall: du musst immer schaun, was bei f() in der Klammer steht, im Fall 1 also t (f(t)). Dann musst du schauen, wo dieses t überall vorkommt, bei dir nur bei dem e^(t...). Da es nicht 2 mal vorkommt, kannst du hier garkeine Kettenregel anwenden (wo sollen denn die 2 Faktoren u und v hier sein?). x ist im Fall 1 ein ganz normaler Parameter, der als Faktor vor dem e^(t...) einfach beibehalten wird.


Ich hoffe, dass ich dir ein wenig helfen konnte,


mathrix

Bezug
                
Bezug
Ableitungen: Auch Kettenregel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Mo 04.04.2005
Autor: Loddar

Hallo Mathrix!


Ich muß gestehen, ich hatte das nicht gesehen, daß hier unterschiedliche Variablen angegeben waren (t bzw. x) ... [peinlich]


Aber auch bei der 1. Aufgabe wird natürlich mit der MBKettenregel gearbeitet, da die e-Funktion hier als verkettete Funktion vorliegt.


Dehalb multiplizieren wir ja auch mit x, um auf das Ergebnis von

$f'(t) \ = \ [mm] x^{\red{2}} [/mm] * [mm] e^{x*t}$ [/mm]

zu kommen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]