www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung via Differenzenquoti
Ableitung via Differenzenquoti < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung via Differenzenquoti: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Di 28.04.2009
Autor: Marius6d

Aufgabe
Berechnen Sie die Ableitung von f(x) = [mm] x^2-3x+2 [/mm] mit dem Differentenquotient.

Also, ich weiss ja, dass die Ableitung von f(x) = [mm] x^2-3x+2 [/mm] --> f'(x) = 2x - 3 ist.

Zum nachrechnen bin ich folgendermassen vorgegangen:

f(x)-f(x0)/x-x0

ergibt:

[mm] (x^2-3x+2)-(x0^2-3x0+2)/x-x0 [/mm]

gekürzt ergibt dies:

[mm] (x^2-3x-x0^2+3x0)/x-x0 [/mm]

Nun habe ich die Zahlen in der Klammer ein bisschen umgestellt um ein binom machen zu können:

[mm] (x^2-x0^2-3x+3x0)/x-x0 [/mm]

Dann ein binom erstellt:

((x-x0)(x+x0)-3(x+x0))/x-x0

Stimmts soweit?

Dann habe ich gekürzt:

(x+x0)-3(x+x0)

Dann

f'(x) = [mm] \limes_{x\rightarrow\x0} [/mm] (x+x0)-3(x+x0) = (x0+x0)-3(x0+x0) = 2x0 - 6x0

Warum komme ich da auf 6x0 und nicht auf -3 wie es richtig wäre, was muss ich tun damit hinter der -3 nichts mehr in der Klammer ist?

        
Bezug
Ableitung via Differenzenquoti: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Di 28.04.2009
Autor: angela.h.b.


> Berechnen Sie die Ableitung von f(x) = [mm]x^2-3x+2[/mm] mit dem
> Differentenquotient.
>  Also, ich weiss ja, dass die Ableitung von f(x) = [mm]x^2-3x+2[/mm]
> --> f'(x) = 2x - 3 ist.
>  
> Zum nachrechnen bin ich folgendermassen vorgegangen:
>  

>( f(x)-f(x0))/(x-x0)

>  
> ergibt:
>  
> [mm](x^2-3x+2)-(x0^2-3x0+2)/x-x0[/mm]
>  
> gekürzt ergibt dies:
>  
> [mm](x^2-3x-x0^2+3x0)/(x-x0)[/mm]
>  
> Nun habe ich die Zahlen in der Klammer ein bisschen
> umgestellt um ein binom machen zu können:
>  
> [mm](x^2-x0^2-3x+3x0)/(x-x0)[/mm]

Hallo,

[mm] ...=\bruch{(x^2-x_0^2)-3(x\red{-}x_0)}{x-x_0} =\bruch{(x-x_0)(x+x_0)-3(x\red{-}x_0)}{x-x_0} [/mm] =

Jetzt (x - [mm] x_0) [/mm] ausklammern und kürzen.

[mm] ...=(x-x_0)\bruch{(x+x_0)-3}{x-x_0}=x+x_0-3 [/mm]

Hiermit klappt dann alles.


Zu Deinen Fehlern:

>  
> Dann ein binom erstellt:
>  
> ((x-x0)(x+x0)-3(x+x0))/(x-x0)

Dies stimmt aufgrund des Vorzeichens nicht, s. o.

>  
> Stimmts soweit?
>  
> Dann habe ich gekürzt:
>  
> (x+x0)-3(x+x0)

Du kürzt hier wie die Axt im Walde. Es gibt da einen Spruch, der vom Kürzen aus Summen handet... (Ich hab' Dir ja oben vorgemacht, wie's richtig geht.)

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]