www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung mit Quotientenregel
Ableitung mit Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung mit Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Sa 09.09.2006
Autor: hey

Aufgabe
Geben sie die erste ABleitung der Funktion [mm] f(x)=\bruch{cos(x)}{sin(t)} [/mm] an

Hallo,
ich habe bei dieser AUfgabe einige Schwierigkeiten.  Mein Lehrer sagt, dass da  [mm] -\bruch{sin(x)}{sin(t)} [/mm] rauskommen muss. Ich krieg dieses Ergebnis jedoch nie.
Ich würde die Aufgabe mit der Quotientenregel lösen.
also
z(x)=cos(x)
z'(x)=-sin(x)
n(x)=sin(t)
n'(x)=cos(t)
wenn man dass dann in [mm] \bruch{z'(x)*n(x)-z(x)*n'(x)}{n(x)*n(x)} [/mm] einsetzt kommt da jedoch was ganz anderes raus.
[mm] \bruch{-sin(x)*sin(t)-cos(x)*cos(t)}{sin(t)*sin(t)} [/mm]
Ich fin meinen Fehler nicht ... kann mir da viellecith jemand helfen??

        
Bezug
Ableitung mit Quotientenregel: Vorsicht Falle!
Status: (Antwort) fertig Status 
Datum: 16:41 Sa 09.09.2006
Autor: Zwerglein

Hi, hey,

> Geben sie die erste ABleitung der Funktion
> [mm]f(x)=\bruch{cos(x)}{sin(t)}[/mm] an

>  Hallo,
>  ich habe bei dieser AUfgabe einige Schwierigkeiten.  Mein
> Lehrer sagt, dass da  [mm]-\bruch{sin(x)}{sin(t)}[/mm] rauskommen
> muss. Ich krieg dieses Ergebnis jedoch nie.

Deine Funktionsvariable ist x!!!
das t  im Nenner ist KEINE Variable, sondern PARAMETER, also konstant!

Heißt: Nur der Zähler wird abgeleitet, der Nenner bleibt - weil er auch insgesamt als Konstante zu betrachten ist (t = konst. => sin(t) = konst. !!!) - bleibt also wie er ist!

Naja und der cos(x) des Zählers gibt abgeleitet natürlich -sin(x).

Bemerkung: An diesem Beispiel sieht man, wie wichtig es ist, bei der Bezeichnung des Funktionsterms f(x) das x dazuzuschreiben. Tut man's nicht, weiß man gar nicht, nach welchem Buchstaben man ableiten soll!
Probier' mal aus, was rauskäme, wenn's hieße:

[mm] f(\red{t}) [/mm] = [mm] \bruch{cos(x)}{sin(t)} [/mm] !!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]