www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Ableitung in Banachräumen
Ableitung in Banachräumen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung in Banachräumen: Definintion
Status: (Frage) beantwortet Status 
Datum: 17:04 So 29.06.2008
Autor: Ninjoo

Wir haben in unserer VL gezeigt, dass für eine Abbildung f: X-->Y gilt(X,Y Banachräume):

f diffbar in [mm] x_{0} \gdw f(x)=f(x_{0}) +f'(x-x_{0}) [/mm] + [mm] r(x)*||x-x_{0}|| [/mm]

und  [mm] \limes_{x\rightarrow x_{0}} [/mm] r(x)=0

Dann gilt offenbar

[mm] f(x_{0}+h)=f(x_{0}) [/mm] +f'(h) + [mm] r(x_{0}+h)*||h|| [/mm] und  [mm] \limes_{h\rightarrow 0} r(x_{0}+h)=0 [/mm]

Mein Ana Tutor hat behaupted, das wäre dasselbe wie:

[mm] f(x_{0}+h)=f(x_{0}) [/mm] +f'(h) + r(h)*||h|| und [mm] \limes_{h\rightarrow 0} [/mm] r(h)=0

also wenn man das [mm] x_{0} [/mm] in r, weglässt. Kann mir das jemand erklären? Meint er eine andere funktion r? Ich verstehe nicht wieso das gelten sollte, allerdings ist es wichtig für einen Beweis den er gemacht hat, den ich leider in der Hausaufgabe so ähnlich brauche....

Würde mich freuen über Antworten! Danke

Gruss Ninjoo



        
Bezug
Ableitung in Banachräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 So 29.06.2008
Autor: Somebody


> Wir haben in unserer VL gezeigt, dass für eine Abbildung f:
> X-->Y gilt(X,Y Banachräume):
>  
> f diffbar in [mm]x_{0} \gdw f(x)=f(x_{0}) +f'(x-x_{0})[/mm] +
> [mm]r(x)*||x-x_{0}||[/mm]
>  
> und  [mm]\limes_{x\rightarrow x_{0}}[/mm] r(x)=0
>  
> Dann gilt offenbar
>
> [mm]f(x_{0}+h)=f(x_{0})[/mm] +f'(h) + [mm]r(x_{0}+h)*||h||[/mm] und  
> [mm]\limes_{h\rightarrow 0} r(x_{0}+h)=0[/mm]
>  
> Mein Ana Tutor hat behaupted, das wäre dasselbe wie:
>  
> [mm]f(x_{0}+h)=f(x_{0})[/mm] +f'(h) + r(h)*||h|| und
> [mm]\limes_{h\rightarrow 0}[/mm] r(h)=0
>  
> also wenn man das [mm]x_{0}[/mm] in r, weglässt. Kann mir das jemand
> erklären? Meint er eine andere funktion r?

Streng genommen ja. Er meint in seiner als äquivalent behaupteten Definition von "$f$ ist differenzierbar in [mm] $x_0$" [/mm] die Funktion [mm] $h\mapsto r(x_0+h)$. [/mm] Denn [mm] $x_0$ [/mm] ist ja festgehalten. Das heisst, man kann [mm] $r(x_0+h)$ [/mm] auch als eine Funktion von $h$ alleine auffassen: dass diese beiden Funktionen in beiden Definitionen den Namen $r$ erhalten haben, tut eigentlich nichts zur Sache, denn diese Funktion $r$ ist in beiden Defintionen "existenzquantifiziert" (es gibt eine Funktion $r$ mit [mm] $\ldots$). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]