www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ableitung der Umkehrfunktion
Ableitung der Umkehrfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung der Umkehrfunktion: Frage
Status: (Frage) beantwortet Status 
Datum: 15:15 Di 11.01.2005
Autor: nika86

Hallo!!!
Ich such ganz dringend die allgemeine Herleitung der Ableitung der Umkehrfunktion!  Laut meinem Mathebuch ist das Ergebnis bei dieser Rechnung dann f(x)=1/f´(x) aber ich krieg den Lösungsweg nicht hin!!! Konnte auch nirgendwo anders etwas hierzu finden!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke für die Hilfe!!!

        
Bezug
Ableitung der Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Di 11.01.2005
Autor: Matti66

Hallo!

> Ich weiß, dass die Ableitung
> der Umkehrfunktion zu ln(x) = 1/x ist

Das stimmt so nicht, denn die Ableitung von ln(x) ist 1/x. Das hat nichts mit der Umkehrfunktion von ln(x) zu tun.

Was du meinst, ist wahrscheinlich die Reziprokregel und die lautet:

[mm] $\red{(}\bruch{1}{g(x)}\red{)'} [/mm] = [mm] \bruch{-g'(x)}{(g(x))^{2}}$ [/mm]

Gruß

Bezug
        
Bezug
Ableitung der Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Di 11.01.2005
Autor: Brigitte

Hallo Nika!

Was Du zeigen möchtest, ist wohl Folgendes:

Gegeben sei eine streng monoton wachsende (oder fallende) Funktion $f$, deren Ableitung auf einem Intervall $[a,b]$ existiert. Dann gilt für die Umkehrfunktion [mm] $f^{-1}$ [/mm] auf dem Bild von $[a,b]$ unter $f$:

[mm](f^{-1})'(y)=\frac{1}{f'(x)}[/mm]

wobei $y=f(x)$ zu setzen ist.

Diese Aussage folgt im Wesentlichen aus der Kettenregel: Es gilt ja

[mm]f^{-1}(f(x))=x.[/mm]

Leitet man auf beiden Seiten ab, erhält man

[mm](f^{-1})'(f(x))\cdot f'(x)=1,[/mm]

also

[mm](f^{-1})'(f(x))=\frac{1}{f'(x)},[/mm]

was zu zeigen war. Beispiel, das Du vielleicht andeuten wolltest: [mm] $y=f(x)=e^x$. [/mm] Dann folgt wegen [mm] $f'(x)=e^x$ [/mm]

[mm](f^{-1})'(y)=\frac{1}{e^x}=\frac{1}{y},[/mm]

also $(ln(y))'=1/y$. Da die Exponentialfunktion auf ganz $IR$ streng monoton wachsend ist, gilt das für jedes (noch so große) abgeschlossene Intervall.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]