Ableitung + Kürzen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:00 Sa 17.03.2007 | Autor: | ingoh |
Hallo Leute,
versuche mich gerade an einer Ableitung, leider weiß ich nicht, wo ich kürzen kann bzw. wie damit ich das vereinfachte Ergebnis aus Derive auch bei mir im Heft stehen habe.
[mm] 2(kx^3 [/mm] - [mm] 12x^2 [/mm] + 3kx - [mm] 4)/(x^2 [/mm] - [mm] 1)^3 [/mm] = [mm] 2(kx^5 [/mm] + [mm] 2kx^3 [/mm] - [mm] 12x^4 [/mm] + [mm] 8x^2 [/mm] - 3kx + [mm] 4)/(x^2 [/mm] - [mm] 1)^4
[/mm]
Ich bedanke mich für jede Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Ingo,
sehe ich das richtig, dass du die Ableitung von [mm] f_k(x)=\bruch{2(kx^3-12x^2+3kx-4)}{(x^2-1)^3} [/mm] berechnen und vereinfachen willst?
Nun das sollte mit der Quotientenregel klappen, wobei du den Nenner mit Hilfe der Kettenregel verarzten kannst:
[mm] f_k'(x)=\bruch{2(3kx^2-24x+3k)(x^2-1)^3-[2(kx^3-12x^2+3kx-4)\cdot{}3(x^2-1)^2\cdot{}2x]}{(x^2-1)^6}
[/mm]
Hier kannst du nun im Zähler [mm] (x^2-1)^2 [/mm] ausklammern und gegen [mm] (x^2-1)^2 [/mm] im Nenner kürzen
[mm] =\bruch{2(3kx^2-24x+3k)(x^2-1)-[2(kx^3-12x^2+3kx-4)\cdot{}3\cdot{}2x]}{(x^2-1)^4}
[/mm]
[mm] =\bruch{2(3kx^4-3kx^2-24x^3+24x+3kx^2-3k)-2(6kx^4-72x^3+18kx^2-24x)}{(x^2-1)^4}=\bruch{2(-3kx^4+48x^3-18kx^2+48x-3k)}{(x^2-1)^4}
[/mm]
Nun noch -3 im Zähler ausklammen:
[mm] =\bruch{-6(kx^4-16x^3+6kx^2-16x+k)}{(x^2-1)^4}
[/mm]
Das stimmt aber nicht mit deinem obigen Ergebnis überein, DERIVE kommt aber auch auf "meine" Lösung.
Hast du dich evtl beim Aufschreiben der Funktion vertippt oder bin ich von einer falschen Funktionsvorschrift ausgegangen?
Check das bitte nochmal nach
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:18 So 18.03.2007 | Autor: | ingoh |
Hallo schachuzipus ,
das wäre dann mein nächster Schritt gewesen. Noch muss ich die 1. Ableitung von
[mm] kx-4/(x^2-1)
[/mm]
bestimmen.
Der Term aus meinem ersten Beitrag ist auf der linken Seite das Derive Ergebnis, auf der Rechten seite meins.
Ich weiß nur nicht, wie ich da kürzen kann um zu vereinfachen! Eigentlich dürfte das ja nicht anders gehen als bei der 2. Ableitung, daher gehe ich das nochmal durch!
Danke aber trotzdem!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:22 So 18.03.2007 | Autor: | ingoh |
Sorry, total verpeilt, ich brauche doch die 2.te Ableitung ;)
Allerdings stimmt der Rest meines vorigen Beitrages.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:27 So 18.03.2007 | Autor: | ingoh |
So vielen Dank, der Hinweis den Nenner nicht auszurechnen damit ich kürzen kann hat mir um einiges weiter geholfen und hab das richtige Ergebnis jetzt!
Vielen Dank, Klasse Forum!
|
|
|
|