www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Ableitung
Ableitung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Di 23.11.2010
Autor: fagottator

Aufgabe
Es sei [mm] \phi_k [/mm] = [mm] \bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k [/mm] , k= 0,...,n

Zeigen Sie:

(i) [mm] {\phi_k}_k [/mm] sind bezüglich des euklidischen oder [mm] L^2-Skalarprodukts, [/mm] (f,g) = [mm] \integral_I{f(x)g(x) dx} [/mm] über I = [-1,1] orthogonal.

Hallo zusammen!

Zuallererst stellt sich mir die Frage, was mit [mm] \bruch{d^k}{dx^k}(x^2-1)^k [/mm] gemeint ist. Soll das die k-te Ableitung von [mm] (x^2-1)^k [/mm] bedeuten? Wenn ja, wie kann ich das in meiner Aufgabe benutzen?

Bisher habe ich leider nur:

[mm] <\phi_k,\phi_n> [/mm] = [mm] <\bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k,\bruch{n!}{(2n)!} \bruch{d^n}{dx^n} (x^2-1)^n> [/mm] = [mm] \bruch{k!}{(2k)!} \cdot \bruch{n!}{(2n)!}<\bruch{d^k}{dx^k} (x^2-1)^k, \bruch{d^n}{dx^n} (x^2-1)^n> [/mm]

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 24.11.2010
Autor: fred97


> Es sei [mm]\phi_k[/mm] = [mm]\bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k[/mm]
> , k= 0,...,n
>  
> Zeigen Sie:
>  
> (i) [mm]{\phi_k}_k[/mm] sind bezüglich des euklidischen oder
> [mm]L^2-Skalarprodukts,[/mm] (f,g) = [mm]\integral_I{f(x)g(x) dx}[/mm] über
> I = [-1,1] orthogonal.
>  Hallo zusammen!
>  
> Zuallererst stellt sich mir die Frage, was mit
> [mm]\bruch{d^k}{dx^k}(x^2-1)^k[/mm] gemeint ist. Soll das die k-te
> Ableitung von [mm](x^2-1)^k[/mm] bedeuten?


Ja

> Wenn ja, wie kann ich das
> in meiner Aufgabe benutzen?


Die Polynome [mm] \phi_n [/mm] nennt man Legendresche Polynome.

Besorg Dir das Buch

             H.Heuser, Gewöhnliche Differentialgleichungen.

Dort findest Du ab Seite 272  eine Fülle  von Eigenschaften dieser Polynome


FRED

>  
> Bisher habe ich leider nur:
>  
> [mm]<\phi_k,\phi_n>[/mm] = [mm]<\bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k,\bruch{n!}{(2n)!} \bruch{d^n}{dx^n} (x^2-1)^n>[/mm]
> = [mm]\bruch{k!}{(2k)!} \cdot \bruch{n!}{(2n)!}<\bruch{d^k}{dx^k} (x^2-1)^k, \bruch{d^n}{dx^n} (x^2-1)^n>[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]