www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:04 Mi 21.10.2009
Autor: steffi4690

Aufgabe
Zeigen Sie, dass zur Funktionenschar f1,k  die Funktionenschar F1,k mit F1,k(t)= [mm] (1-(1+k*t)*e^{-k*t})/k^2 [/mm]  gehört, bei der jeweils F1,k eine Stammfunktion von f1,k ist.
f1,k(t)= 1*t*e^(-k*t)

Hallo
Laut Aufgabenstellung soll ich ja beweisen, dass F abgeleitet wieder f ist.
Ich versuche mich gerade an der Ableitung und bräuchte da einen kleinen Tipp :)
Ich rechne mit der Quotientenregel, die ja so geht : (u'*v-u*v')/v²
u ist -k*t*e^(-k*t)   v=k²  v'=0   nur u' bereitet mir ein wenig probleme
Habe u' mit der Kettenregel versucht und bin auf folgendes ergebnis gekommen : u'= -k*e^(-k*t)+(-k*t)*e^(-k*t)*(-k)  hier kann ich ja jetzt e^(-k*t)*(-k)  ausklammern oder?   wäre das dann  e^(-k*t)*(-k)*(-k*t*1) ?
Hoffe ihr könnt mir helfen, damit ich die Ableitung zuende rechnen kann und nicht durch u' gleich alles falsch ist :)
Liebe Grüße

        
Bezug
Ableitung: keine Variable
Status: (Antwort) fertig Status 
Datum: 19:15 Mi 21.10.2009
Autor: Loddar

Hallo steffi!


$k_$ ist hier keine Variable, nach der man ableitet. Man betrachtet $k_$ wie eine Konstante.

Forme um zu:
[mm] $$F_{1,k}(t) [/mm] \ = \  [mm] \bruch{1-(1+k*t)*e^{-k*t}}{k^2} [/mm] \ = \ [mm] \bruch{1}{k^2}*\left[1-(1+k*t)*e^{-k*t}\right]$$ [/mm]

Damit bleibt der konstante Faktor [mm] $\bruch{1}{k^2}$ [/mm] beim Ableiten erhalten.
Und für die Ableitung der eckigen Klammer benötigst Du dann auch nicht die Quotientenregel, sondern "nur" die MBProduktregel.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]