Ableiten und Reaktionsfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:55 Mo 13.12.2010 | Autor: | stuallo |
Aufgabe | Ui(Xi;G) = [mm] (x1^{1-a})G^a
[/mm]
Folgendes gilt:
[mm] (\partial U1/\partial G)/(\partial U1/\partial [/mm] x1) = 1
G=z1+z2
Xi=Yi-Zi |
Hallo!
Ich verstehe diese Aufgabe nicht.
Die Lösung für diese Gleichung soll sein:
z1(z2) = a y1 - (1-a) z2
z2(z1) = a y2 - (1-a) z1
Kann mir jemand den Lösungsweg zeigen?
* Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:11 Mo 13.12.2010 | Autor: | fred97 |
> Ui(Xi;G) = [mm](x1^{1-a})G^a[/mm]
............. das fängt ja wieder gut an .............
Links kommt i vor, rechts nicht ! Was steht eigentlich rechts ? [mm](x_1^{1-a})G^a[/mm] ??
>
> Folgendes gilt:
>
> [mm](\partial U1/\partial G)/(\partial U1/\partial[/mm] x1) = 1
>
> G=z1+z2
Was sind [mm] z_1 [/mm] und [mm] z_2 [/mm] ???
>
> Xi=Yi-Zi
Oh, jetzt kommt noch ein [mm] y_i [/mm] dazu, und jeder weiß woher und was es bedeutet . Zauberhaft !
> Hallo!
>
> Ich verstehe diese Aufgabe nicht.
Da bist Du nicht alleine !
>
> Die Lösung für diese Gleichung soll sein:
Welche ? Oben stehen schon mal 5 von der Sorte !!
>
> z1(z2) = a y1 - (1-a) z2
> z2(z1) = a y2 - (1-a) z1
>
> Kann mir jemand den Lösungsweg zeigen?
Nein.
FRED
>
> * Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
|
|
|
|