www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Abbildungen und Dimensionen
Abbildungen und Dimensionen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen und Dimensionen: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 16:44 Mi 21.11.2007
Autor: wolle238

Aufgabe
F¨ur beliebiges [mm]a = (a_1, . . . , a_n) \in K^n[/mm] sei [mm]f_a :K^n \to K[/mm] die Abbildung [mm]x = (x_1, . . . , x_n) \to \summe_{i_n}^{n} a_i x_i[/mm].
a) Zeige, daß fa linear und die Menge [mm]H_a := {x \in K_n|f_a(x) = 0}[/mm] ein Teilraum von [mm]K_n[/mm] ist. Welche Dimension hat [mm]H_a[/mm]?
b) Zeige, dass die folgenden Bedingungen äquivalent sind: (i) [mm]H_a = H_b[/mm] (ii) Rang(a, b) ≤ 1 und Rang(a) = Rang(b) (iii) Es gibt ein [mm] \lambda \in K^x[/mm] mit b = [mm]\lambda [/mm]a.

Hallo zusammen!!
Wer kann mir helfen?? Irgendwie kommt keiner damit zurecht, den ich bisher gefragt habe! :( Morgen muss ich das abgeben und hab gar keine Idee zu dieser Aufgabe
VLG Julia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildungen und Dimensionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Do 22.11.2007
Autor: angela.h.b.

Hallo,

[willkommenmr].

Du bist ganz neu bei uns, daher solltest Du Dir einmal die Forenregeln duchlesen, insbesondere legen wir Wert auf eigene Lösungsansätze und konkrete fragen.

Wenn wir nicht wissen, wo das Problem liegt, können wir schlecht helfen. es ist ja ein Unterschied, ob jemand einen kl. Trick nicht kennt oder v. den Definitionen keinen blassen Schimmer hat.

Du sollst die Linearität der vorgegebenen Abbildung [mm] f_a [/mm] prüfen.

Wie lauten denn die Bedingungen für Linearität? Was ist zu zeigen?
Wie hast das auf Deine Aufgabe angewendet, und falls Du es nicht konntest, warum bist Du gescheitert?

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]