www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Abbildungen
Abbildungen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 16.11.2009
Autor: denice

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gegeben sind folgende Abbildungen:
f : [mm] R^2->R^3 [/mm] ;  [mm] (x,y)->(x,y+x^2,y^3) [/mm]
g: [mm] R^3->R^2; [/mm]  (x,y,z)->(2x+y,z)

(a) Sind die Abbildungen f; g injektiv?
(b) Sind die Abbildungen f; g surjektiv?
Meine Frage ist wie ich hier  vorgehen muss. Bei Mengenabb.  kann  ich das wohl einigermaßen  aber hier bei den  Funktionen  verstehe ich  das  nicht ganz. Wäre schön wenn  ihr mir  helfen könntet.
Liebe Grüsse

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 16.11.2009
Autor: fred97

Betrachten wir mal die Funktion g

Injektiv: folgt aus g(x,y,z) = g(a,b,c) stets (x,y,z) = (a,b,c) ?

Wenn ja, so ist g injektiv; wenn nein, so eben nicht

Surjektiv: gibt es zu jedem (u,v) [mm] \in \IR^2 [/mm] ein(x,y,z) [mm] \in \IR^3 [/mm] mit g(x,y,z) = (u,v) ?

Wenn ja, so ist g surjektiv; wenn nein, so eben nicht

FRED

Bezug
                
Bezug
Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Mo 16.11.2009
Autor: denice

Also  ich  habe jetzt mal für f geguckt und einige x,y werte eingesetzt.
Es werden nicht alle x,y,z Werte getroffen aber es  kommen  auch keine  Wiederholungen  vor.  Somit wäre  f ja inj. aber nicht surj.
Stimmt das so? Und ist es möglich dies  durch ausprobieren zu lösen?
Liebe Grüsse

Bezug
                        
Bezug
Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Mo 16.11.2009
Autor: statler

Hi, [willkommenmr]

>  ... Und ist es möglich dies  durch
> ausprobieren zu lösen?

Ich kann es mir nicht verkneifen: Für Physiker ja, für Mathematiker nein.

Gruß aus HH-Harburg
Dieter


Bezug
                        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 16.11.2009
Autor: statler


> Also  ich  habe jetzt mal für f geguckt und einige x,y
> werte eingesetzt.
>  Es werden nicht alle x,y,z Werte getroffen aber es  kommen
>  auch keine  Wiederholungen  vor.  Somit wäre  f ja inj.
> aber nicht surj.

f ist nicht surjektiv, weil z. B. (0, 1, 8) kein Bild ist (nicht getroffen wird). Das solltest du mal selbst nachrechnen, warum das so ist. Für den Nachweis. daß etwas nicht allgemein gilt, reicht ein (konkretes) Gegenbeispiel.

Gruß
Dieter


Bezug
                                
Bezug
Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mo 16.11.2009
Autor: denice

Danke. Ich denke ich habe es verstanden! (1,1,1) wird  z.B. auch nicht getroffen. Das habe  ich schon gesehen nur wusste ich nicht, dass ein Gegenbeispiel als Begründung ausreicht.
Danke

Bezug
        
Bezug
Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 16.11.2009
Autor: denice

Habe ich mir auch gedacht.  Durch  probieren  weiss ich zumindest schon einmal,  dass f inj. ist  und g bije.!
Jetzt fehlen  mir aber die Ansätze für  den  Beweis.
Kann  mir da jemand helfen?
Danke Denice

Bezug
                
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mo 16.11.2009
Autor: fred97

Nochmal zu g:

g ist nicht injektiv, da z.B.: g(0,2,0) =(2,0) = g(1,0,0)

g ist surjektiv: ist (u,v) [mm] \in \IR^2, [/mm] so ist g(0,u,v) = (u,v)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]