Abbildung von Basen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:06 Mo 10.12.2012 | Autor: | Gnocchi |
Aufgabe | Seien V und W Vektorräume über einem Körper K und sei F V [mm] \to [/mm] W eine lineare Abbildung. Sei [mm] C=(w_1,...,w_n) [/mm] eine Familie linear unabhängiger Vektoren von Bild (F).
Beweisen sie die folgende Aussage: Falls die Familie B = [mm] (v_1,...,v_m) [/mm] von Vektoren aus V so gewählt wurde, dass [mm] F(v_i) [/mm] = [mm] w_i [/mm] für i [mm] \in [/mm] {1,...n}, so ist auch B linear unabhängig. |
Irgendwie fehlt mir gerade der Ansatz zur Aufgabe.
Andersrum, dass folgt, wenn B linear unabhängig ist, so ist C auch linear unabhängig, würde ich verstehen. Aber, dass ich nun aus linear unabhängigen Vektoen des Bildes folgern , dass die abgebildeten Vektoren bereits linear unabhängig sind, kann ich mir nicht vorstellen.
Kann ich irgendwie mit einer Umkehrabbildung argumentieren, die von W [mm] \to [/mm] V geht? Wäre die dann automatisch auch wieder linear?
Sonst bräuchte ich einfach nur nen kleinen Ansatz als Hilfe...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:20 Mo 10.12.2012 | Autor: | Marcel |
Hallo,
> Seien V und W Vektorräume über einem Körper K und sei F
> V [mm]\to[/mm] W eine lineare Abbildung. Sei [mm]C=(w_1,...,w_n)[/mm] eine
> Familie linear unabhängiger Vektoren von Bild (F).
> Beweisen sie die folgende Aussage: Falls die Familie B =
> [mm](v_1,...,v_m)[/mm] von Vektoren aus V so gewählt wurde, dass
> [mm]F(v_i)[/mm] = [mm]w_i[/mm] für i [mm]\in[/mm] {1,...n}, so ist auch B linear
> unabhängig.
> Irgendwie fehlt mir gerade der Ansatz zur Aufgabe.
> Andersrum, dass folgt, wenn B linear unabhängig ist, so
> ist C auch linear unabhängig, würde ich verstehen.
ich nicht: Betrachte [mm] $F=0_W\,.$
[/mm]
> Aber,
> dass ich nun aus linear unabhängigen Vektoen des Bildes
> folgern , dass die abgebildeten Vektoren bereits linear
> unabhängig sind, kann ich mir nicht vorstellen.
> Kann ich irgendwie mit einer Umkehrabbildung
> argumentieren, die von W [mm]\to[/mm] V geht? Wäre die dann
> automatisch auch wieder linear?
> Sonst bräuchte ich einfach nur nen kleinen Ansatz als
> Hilfe...
Na, "kaue" den Standardansatz durch:
Wir betrachten eine Linearkombination der Null, hergestellt mit den
Vektoren aus [mm] $B\,$:
[/mm]
Sei also
[mm] $$(\*)\;\;\;\sum_{k=1}^n \lambda_k v_k=0_V\,.$$
[/mm]
(Rechterhand ist der Nullvektor aus [mm] $V\,$ [/mm] gemeint, daher der Index.)
Zu zeigen ist nun, dass [mm] $\lambda_1=\ldots=\lambda_n=0$ ($=0_K$) [/mm] gilt.
Aus [mm] $(\*)$ [/mm] folgt aber
[mm] $$0_W=F(0_V)=F(\sum_{k=1}^n \lambda_k v_k)\,,$$
[/mm]
(linkerhand ist natürlich der Nullvektor aus [mm] $W\,$ [/mm] gemeint, und natürlich
seien die [mm] $\lambda_j$ ($j=1,\ldot,n$) [/mm] alle [mm] $\in [/mm] K$), denn lineare
Abbildungen zwischen Vektorräumen bilden das neutrale Element des
Definitionsbereichs auf das neutrale des Zielbereichs ab.
Nun benutze die Linearität von [mm] $F\,$ [/mm] und die lineare Unabhängigkeit von
[mm] $C=(w_1,\ldots,w_n)=(F(v_1),\ldots,F(v_n))\,,$ [/mm] und Du solltest das
Gewünschte erhalten.
P.S. "Andersherum" (also so, wie Du meintest, dass Du es verstehen
würdest) ist die Aussage, wie gesagt, i.a. schlicht falsch:
Betrachte einfach $F: V [mm] \to [/mm] W$ mit [mm] $F(v):=0_W$ [/mm] für alle $v [mm] \in V\,.$
[/mm]
Was man aber zeigen kann:
Ist [mm] $B\,$ [/mm] linear unabhängig , $F:V [mm] \to [/mm] W$ [mm] ($V,W\,$ [/mm] wie oben) linear UND injektiv,
dann ist auch obige Familie [mm] $C\,$ [/mm] linear unabhängig. Ich würde
Dich auch bitten, das zu beweisen (wobei es gut sein kann, dass das eh
auf Eurem Aufgabenblatt steht).
Gruß,
Marcel
|
|
|
|