www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildung
Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Sa 11.12.2004
Autor: nitro1185

hallo!!Ich habe eine kleine frage an euch:

Gesucht ist die Abbildungsmatrix von f bezüglich der Standardbasen von

[mm] R^{4} [/mm] und R²!!

f: [mm] R^{4} [/mm] ----> R²     Gegeben habe ich ein paar Abbildungswerte:

f(3,2,1,1)=(2,1)

f(1,1,1,0)=(1,3)

f(2,1,0,0)=(2,4)

f(1,0,0,0)=(0,0)

Ich muss doch aus den gegebenen Abbildungen eine allgemeine Abbildung herausfinden,denn ohne Abbildung kann ich doch keine Abbildungsmatrix bestimmen,oder??

MFG Daniel

        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 11.12.2004
Autor: Stefan

Hallo Daniel!

Es sei [mm] ${\cal B}_4$ [/mm] die Basis [mm] $\{(3,2,1,1)^T,(1,1,1,0)^T, (2,1,0,0)^T,(1,0,0,0)^T\}$ [/mm] des [mm] $\IR^4$ [/mm] sowie [mm] ${\cal E}_4$ [/mm] bzw. [mm] ${\cal E}_2$ [/mm] die Standarbasen des [mm] $\ÎR^4$ [/mm] bzw. [mm] $\IR^2$. [/mm]

Bezeichnet allgemein für eine Abbildung $f:V [mm] \to [/mm] W$ für Basen [mm] ${\cal A}$ [/mm] von $V$ und [mm] ${\cal B}$ [/mm] von $W$ die Koordinatenmatrix der Abbildung $f$ bezüglich der Bases [mm] ${\cal A}$ [/mm] und [mm] ${\cal B}$ [/mm] mit [mm] $M_{{\cal B}}^{{\cal A}}(f)$ [/mm] (d.h. in [mm] $M_{{\cal B}}^{{\cal A}}(f)$ [/mm] stehen die Koordinaten der Bilder der Basis [mm] ${\cal A}$ [/mm] bezüglich der Basis [mm] ${\cal B}$), [/mm] dann haben wir hier nach Voraussetzung:

[mm] $M_{{\cal E}_2}^{{\cal B}_4}(f) [/mm] = [mm] \begin{pmatrix} 2 & 1 & 2 & 0 \\ 1 & 3 & 4 & 0 \end{pmatrix}$. [/mm]

Nun gilt die folgende Transformationsregel:

[mm] $M_{{\cal E}_2}^{{\cal E}_4}(f) [/mm] = [mm] M_{{\cal E}_2}^{{\cal B}_4}(f) \cdot T_{{\cal B}_4}^{{\cal E}_4}$, [/mm]

wobei

[mm] $T_{{\cal B}_4}^{{\cal E}_4} [/mm] = [mm] M_{{\cal B}_4}^{{\cal E}_4}(id_{\IR^4})$ [/mm]

die Transformationsmatrix ist. Diese ist nicht einfach zu berechnen, denn ich müsste ja die Standardbasis [mm] ${\cal E}_4$ [/mm] bezüglich der "neuen" Basis [mm] ${\cal B}_4$ [/mm] darstellen. Umgekehrt ist es leichter, denn die Basis [mm] ${\cal B}_4$ [/mm] steht ja schon bereits bezüglich der Standardbasis [mm] ${\cal E}_4$ [/mm] da!! :-)

Zum Glück gilt die folgende Beziehung:

[mm] $T_{{\cal E}_4}^{{\cal B}_4} [/mm] = [mm] \left( T_{{\cal B}_4}^{{\cal E}_4} \right)^{-1} [/mm] = [mm] \left( M_{{\cal B}_4}^{{\cal E}_4}(id_{\IR^4})\right)^{-1}$. [/mm]

Was musst du also tun?

Ganz einfach, folgendes berechnen:

[mm] $M_{{\cal E}_2}^{{\cal E}_4}(f)$ [/mm]

$= [mm] M_{{\cal E}_2}^{{\cal B}_4} \cdot T_{{\cal B}_4}^{{\cal E}_4}$ [/mm]

$= [mm] M_{{\cal E}_2}^{{\cal B}_4} \cdot \left( T_{{\cal E}_4}^{{\cal B}_4} \right)^{-1}$ [/mm]

$= [mm] \begin{pmatrix} 2 & 1 & 2 & 0 \\ 1 & 3 & 4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}^{-1}$. [/mm]

Viel Spaß dabei! :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]