www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - lineare Fortsetzung
lineare Fortsetzung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Fortsetzung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:04 Fr 07.05.2021
Autor: sancho1980

Aufgabe
Betrachten Sie die Funktion $f: [mm] \mathbb{R}^2 \to \mathbb{R}$ [/mm] mit [mm] $f(x)=\begin{cases} \frac{{x_1}^3}{{x_1}^2 + {x_2}^2}, & x = (x_1,x_2) \in \mathbb{R}^2 \setminus \{ (0,0) \}, \\ 0, & x = (0,0) \end{cases}$. [/mm]

Zeigen Sie, dass sich die Abbildung $v [mm] \to [/mm] D_vf(0,0)$, für $v [mm] \in \mathbb{R}^2$ [/mm] mit [mm] $\|v\|_2 [/mm] = 1$ nicht zu einer linearen Abbildung auf ganz [mm] $\mathbb{R}^2$ [/mm] fortsetzen lässt.

Hallo,
wir stehen hier leider derart auf dem Schlauch, dass uns die Aufgabenstellung an sich unklar ist. Kann man das irgendwie verständlicher umformulieren?
Vielen Dank und viele Grüße,
Martin

        
Bezug
lineare Fortsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Sa 08.05.2021
Autor: Gonozal_IX

Hiho,

>  wir stehen hier leider derart auf dem Schlauch, dass uns die Aufgabenstellung an sich unklar ist. Kann man das irgendwie verständlicher umformulieren?

eigentlich steht da alles drin, was es zu sagen gibt.
Sind dir denn die Zeichen alle klar?

1.) Zu betrachten ist also $D_vf(0,0)$. Was ist das? Wofür steht das [mm] $D_v$? [/mm] Vermutlich habt ihr das auch nur definiert für [mm] $||v||_2 [/mm] = 1$, was die Einschränkung in der Aufgabenstellung erklärt.

2.) Wenn dir klar ist, wofür der Ausdruck $D_vf(0,0)$ steht, dann wird jetzt die Abbildung $g(v) = D_vf(0,0)$ betrachtet. g ist dann eine Abbildung [mm] $\left\{v \in \IR^2 \Big| ||v||_2 = 1 \right\} \to \IR$. [/mm]

3.) Zu zeigen ist nun, dass $g$ sich nicht stetig auf ganz [mm] $\IR^2$ [/mm] fortsetzen lässt. Woran das scheitert, kann man vermuten, wenn du die Darstellung von $g$ hast.

Gruß,
Gono


Bezug
                
Bezug
lineare Fortsetzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 08.05.2021
Autor: sancho1980

Hallo Gono,
hast du überlesen, dass da "zu einer linearen" Abbildung steht?
Viele Grüße,
Martin

Bezug
                        
Bezug
lineare Fortsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Sa 08.05.2021
Autor: fred97


> Hallo Gono,
>  hast du überlesen, dass da "zu einer linearen" Abbildung
> steht?
>  Viele Grüße,
>  Martin


Ja, das hat er wohl überlesen.

Berechne g auf dem Rand des Einheitskreises und zeige,  dass sich diese Abbildung nicht linear fortsetzen lässt.

Bezug
                        
Bezug
lineare Fortsetzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Sa 08.05.2021
Autor: Gonozal_IX

Hiho,

>  hast du überlesen, dass da "zu einer linearen" Abbildung steht?

tjo… manchmal liest man das, was man lesen will.
Sorry…

Gruß,
Gono


Bezug
        
Bezug
lineare Fortsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Mo 10.05.2021
Autor: fred97


> Betrachten Sie die Funktion [mm]f: \mathbb{R}^2 \to \mathbb{R}[/mm]
> mit [mm]f(x)=\begin{cases} \frac{{x_1}^3}{{x_1}^2 + {x_2}^2}, & x = (x_1,x_2) \in \mathbb{R}^2 \setminus \{ (0,0) \}, \\ 0, & x = (0,0) \end{cases}[/mm].
>  
> Zeigen Sie, dass sich die Abbildung [mm]v \to D_vf(0,0)[/mm], für [mm]v \in \mathbb{R}^2[/mm]
> mit [mm]\|v\|_2 = 1[/mm] nicht zu einer linearen Abbildung auf ganz
> [mm]\mathbb{R}^2[/mm] fortsetzen lässt.
>  Hallo,
>  wir stehen hier leider derart auf dem Schlauch, dass uns
> die Aufgabenstellung an sich unklar ist. Kann man das
> irgendwie verständlicher umformulieren?
>  Vielen Dank und viele Grüße,
>  Martin


Hallo Martin,

man sollte einfach mal losrechnen ......

Sei zunächst [mm] $K:=\{v \in \IR^2: ||v||_2=1\}$ [/mm] und $g:K [mm] \to \IR$ [/mm] definiert durch

     $g(v):=D_vf(0,0).$

Dann ist, mit [mm] $v=(v_1,v_2) \in [/mm] K,$

     $g(v)= [mm] \lim_{t \to 0} \frac{f(tv_1,tv_2)-f(0,0)}{t}.$ [/mm]

Rechne nach:

     [mm] $g(v)=v_1^3.$ [/mm]

Nun ist zu zeigen: es gibt keine lineare Abbildung $G: [mm] \IR^2 \to \IR$ [/mm] mit

     $G=g$ auf $K$.

Dazu nehmen wir an, es gäbe eine solche Abildung $G$.

Sei $u=(1,0), w=(0,1)$ und $v= [mm] \frac{1}{\sqrt{2}}(u+w)$. [/mm]

Dann haben wir

     $u, v , w [mm] \in [/mm] K, G(u)=g(u)=1, G(w)=g(w)=0$

und

     $ [mm] \frac{1}{ 2 \sqrt{2}}=g(v)=G(v)= \frac{1}{\sqrt{2}}G(u)+ \frac{1}{\sqrt{2}}G(w)= \frac{1}{\sqrt{2}},$ [/mm]

Widerspruch !

Bezug
                
Bezug
lineare Fortsetzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 Mo 10.05.2021
Autor: sancho1980

Danke, das war gut nachvollziehbar. Aber das mit dem einfach mal Losrechnen sagt sich so leicht ... :-(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]