Ortslinie und gem. Punkt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:58 So 07.11.2004 | Autor: | rapher |
Guten Tag,
folgende Funktion ist gegeben: f(x) = [mm] \bruch{1}{3}x^{3}-k^{2}x+\bruch{2}{3}k^{3}, [/mm] k [mm] \in \IR [/mm] (pos, incl. 0)
Aufgabe ist, eine Ortskurve für alle Hochpunkte der Schar zu berechnen, sowie den Punkt den alle Grafen der Schar gemein haben. Konnte leider nirgends eine vernünftige Anleitung zu diesem Problem finden. Ich hoffe hier kann mir jemand helfen. Ansatz reicht!
MfG,
Rapha
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:28 So 07.11.2004 | Autor: | Fugre |
> Guten Tag,
>
> folgende Funktion ist gegeben: f(x) =
> [mm]\bruch{1}{3}x^{3}-k^{2}x+\bruch{2}{3}k^{3},[/mm] k [mm]\in \IR[/mm] (pos,
> incl. 0)
>
> Aufgabe ist, eine Ortskurve für alle Hochpunkte der Schar
> zu berechnen, sowie den Punkt den alle Grafen der Schar
> gemein haben. Konnte leider nirgends eine vernünftige
> Anleitung zu diesem Problem finden. Ich hoffe hier kann mir
> jemand helfen. Ansatz reicht!
>
> MfG,
> Rapha
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
Hallo Rapher,
das ist eigentlich gar nicht so schwer.
Der Ortskurve der Hochpunkte nähern wir uns als erstes.
Also zuerst musst du natürlich den Hochpunkt allgemein ermitteln.
So dass du in diesem Fall diesem Fall zwei Extrempunkte erhälst und dann musst du in Abhängigkeit von $ k $ bestimmen,
ob es sich um Hoch- oder Tiefpunkte handelt.
Jetzt hast du für deinen allgemeinen Hochpunkt die Koordinaten, zum Beispiel x=6k und y=3k , dann löst du die Gleichung mit dem x
nach k auf und setzt diese dann in der anderen ein. Im Beispiel $ x=6k $ => $ x/6=k $ => $ y=3*x/6=0,5x $ und schon hast du die
Gleichung der Ortskurve. Die Aufgaben sind natürlich meistens schwerer, so dass du auch noch den Definitionsbereich oder Fallunterscheidungen heranziehen musst.
Nach gemeinsamen Punkten suchst du, indem du schaust an welchen Stellen das Scharparameter keinen Einfluss auf den
Funktionswert nimmt. Hierzu gehst du hin und nimmst setzt die Funktionen mit ungleichen Scharparametern gleich.
Im Beispiel: $ [mm] \bruch{1}{3}x^{3}-k_1^{2}x+\bruch{2}{3}k_1^{3} [/mm] = [mm] \bruch{1}{3}x^{3}-k_2^{2}x+\bruch{2}{3}k_2^{3} [/mm] $ Wobei gilt, dass $ [mm] k_1 \ue k_2 [/mm] $
Ich hoffe ich konnte dir helfen, sollte noch etwas unklar sein, so frag bitte.
Liebe Grüße
Fugre
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:32 So 07.11.2004 | Autor: | rapher |
Danke ... alles gecheckt!
|
|
|
|