Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:35 So 21.05.2006 | Autor: | Sense |
Aufgabe | Aus einem DinA4 Karton soll durch herrausschneiden eine Schachtel hergestellt weden.
a) Wie groß sind die Quadrate/Rechtecke zu wählen, damit das Volumen möglichst groß wird?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
b) Welches Volumen und welche Maße hat diese Schachtel? |
Hi ihr Matheversteher,
Bitte helft mir. Ich verstehe diese Aufgabe zwar, doch ich hab das bis jetzt rein durch porbieren versucht. Ich würde gern wissen, wie die exakten Wert(e) lauten. Kann man das auch irgendwie mathematisch begründen ?
Meine Überlegten Bedingungen:
Flächeninhalt: A=a*b
Umfang: 2a+2b
A(b)= (u-2b/2)*b <-- das gilt doch aber nur für gegebenen Umfang ?!?
komme einfach nicht weiter
Vielen dank schon mal im Vorraus
Gruß Sense
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:17 So 21.05.2006 | Autor: | leduart |
Hallo Sense
1. DIN A bedeutet das Seitenverhältnis ist [mm] 1:\wurzel{2}. [/mm] (Dann kann man das Blatt halbieren, und es hat dieselben Seitenverhältnisse) DIN A4 hat die Seitenlängen 20cm und [mm] 20*\wurzel{2}cm=29,7cm.
[/mm]
Um eine Schachtel ohne Deckel daraus zu machen, muss ich an jeder Ecke ein Quadrat rausschneiden, Seitenlänge x, dann wird die Schachtel x hoch. Wie lang sind jetzt noch die Seiten des Bodenrechtecks? Und du willst ja nicht die Fläche, sondern das Volumen! Also schreib es mit der Unbekannten x hin. Wenn du die Formel hast, dann weisst du doch, wie man das maximum findet?
Sonst schreib noch mal, sag dabei wie weit du gekommen bist.
Wenns dir schwer fällt dir das vorzustellen, nimm einfach ein Stück Papier und mach so'n Ding!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:06 So 21.05.2006 | Autor: | Sense |
erstmal vielen Dank für die schnelle Antwort.
Aber ich hab wirklich null Plan -_-
Was muss ich genau machen ?
Und wie rechnet man die extremwerte aus (haben mit dem Thema erst angefangen) ?
Welche Länge für x wäre da Beste ?
Vielen vielen Dank schon mal im Vorraus und viele liebe Grüße
Sense
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:59 So 21.05.2006 | Autor: | M.Rex |
Hallo,
Wenn ich aus einem Rechteck mit den Seiten a und b an den vier Ecken ein Quadrat mit den Seitenlängen x herausschneidet, erhät man ja ein Rechteck mit den Seiten a'= a - 2x und b´= b - 2x . Jetzt Hat man also für das Volumen der Schachtel V = a´* b´* x. Wenn man jetzt die Seitenverhältnisse des DIN A 4 Blattes einsetzt, gilt a = 20 cm, b = a [mm] \wurzel{2} [/mm] = 29,4cm (Siehe leduarts Antwort). Also hat man folgende Volumenformel:
V(x) = (20-2x) (29,4-2x) x .
Davon musst du jetzt das Maximum bestimmen.
Gruss
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:48 So 21.05.2006 | Autor: | Sense |
Vielen vielen Dank euch beiden.
Habs rausbekommen !!!
Vielen vielen Dank und noch ein schönes Wochenende
Viele liebe Grüße Sense
|
|
|
|