www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differentialquotient
Differentialquotient < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialquotient: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 11.07.2017
Autor: Mathemurmel

Aufgabe
Gegeben sei die Funktion einer reellen Variablen  x  mit  f(x) = [mm] \wurzel{3x + 5} [/mm] - 2.
a) Berechnen und vereinfachen Sie:  p(h) := [mm] \bruch{f(x + h) - f(x)}{h} [/mm]
b) Berechnen Sie    lim für h -> 0 von p(h).

Frage zu b):  meine Lösung über Differenzenquotient und Differetialquotient stimmt nicht mit der Ableitung von  p(x)  überein. p'(x) = [mm] \bruch{3}{2\wurzel{3x + 5}}. [/mm]

Meine Lösung:
p(h) = [mm] \bruch{\wurzel{3(x + h) + 5} - \wurzel{3x + 5}}{h} [/mm]

p(h) = [mm] \bruch{\wurzel{3(x + h) + 5}}{h} [/mm] - [mm] \bruch{\wurzel{3x + 5}}{h} [/mm]

gesucht:   lim für h -> 0 von p(h)

Ich erweitere jeden der beiden Brüche mit seiner Wurzel :

p(h) = [mm] \bruch{3x + 3h + 5}{\wurzel{3x + 3h + 5} h} [/mm] - [mm] \bruch{3x + 5}{\wurzel{3x + 5} h} [/mm]

für  h -> 0  ergibt sich:

[mm] \wurzel{3x + 3h + 5} [/mm]  ->  [mm] \wurzel{3x + 5} [/mm]

=>   lim für h -> 0 von p(h) =

     = [mm] \bruch{3x + 3h + 5 - (3x + 5)}{\wurzel{3x + 5}h} [/mm]

     = [mm] \bruch{3h}{\wurzel{3x + 5}h} [/mm]

     = [mm] \bruch{3}{\wurzel{3x + 5}} [/mm]

Dieses Ergebnis stimmt aber nicht, da ja

  p'(x) = [mm] \bruch{3h}{2\wurzel{3x + 5}h} [/mm]  herauskommen müsste.

        
Bezug
Differentialquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mi 12.07.2017
Autor: HJKweseleit


> Gegeben sei die Funktion einer reellen Variablen  x  mit  
> f(x) = [mm]\wurzel{3x + 5}[/mm] - 2.
>  a) Berechnen und vereinfachen Sie:  p(h) := [mm]\bruch{f(x + h) - f(x)}{h}[/mm]
>  
> b) Berechnen Sie    lim für h -> 0 von p(h).
>  Frage zu b):  meine Lösung über Differenzenquotient und
> Differetialquotient stimmt nicht mit der Ableitung von  
> p(x)  überein. p'(x) = [mm]\bruch{3}{2\wurzel{3x + 5}}.[/mm]
>  
> Meine Lösung:
>  p(h) = [mm]\bruch{\wurzel{3(x + h) + 5} - \wurzel{3x + 5}}{h}[/mm]
>  
> p(h) = [mm]\bruch{\wurzel{3(x + h) + 5}}{h}[/mm] - [mm]\bruch{\wurzel{3x + 5}}{h}[/mm]
>  
> gesucht:   lim für h -> 0 von p(h)
>  
> Ich erweitere jeden der beiden Brüche mit seiner Wurzel :
>  
> p(h) = [mm]\bruch{3x + 3h + 5}{\wurzel{3x + 3h + 5} h}[/mm] -
> [mm]\bruch{3x + 5}{\wurzel{3x + 5} h}[/mm]
>  
> für  h -> 0  ergibt sich:
>  
> [mm]\wurzel{3x + 3h + 5}[/mm]  ->  [mm]\wurzel{3x + 5}[/mm]

>  
> =>   lim für h -> 0 von p(h) =

>  
> = [mm]\bruch{3x + 3h + 5 - (3x + 5)}{\wurzel{3x + 5}h}[/mm]


Stopp!

Beide Brüche gehen für h-->0 gegen unendlich bzw. -unendlich. Du kannst nicht bei einem im Nenner h in der Wurzel gegen 0 und außerhalb noch als h verwenden.


p(h) = [mm]\bruch{\wurzel{3(x + h) + 5} - \wurzel{3x + 5}}{h}[/mm]=  [mm]\bruch{\wurzel{3(x + h) + 5} - \wurzel{3x + 5}}{h}[/mm]*[mm]\bruch{\wurzel{3(x + h) + 5} + \wurzel{3x + 5}}{\wurzel{3(x + h) + 5} + \wurzel{3x + 5}}[/mm]

Jetzt wende auf den Zähler die 3. bin. Formel an...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]